T. Asano, Daisuke Kawata, Michiko S. Fujii, Junichi Baba
{"title":"Growing Local arm inferred by the breathing motion","authors":"T. Asano, Daisuke Kawata, Michiko S. Fujii, Junichi Baba","doi":"10.1093/mnrasl/slad190","DOIUrl":null,"url":null,"abstract":"Theoretical models of spiral arms suggest that the spiral arms provoke a vertical bulk motion in disc stars. By analysing the breathing motion, a coherent asymmetric vertical motion around the mid-plane of the Milky Way disc, with Gaia DR3, we found that a compressing breathing motion presents along the Local arm. On the other hand, with an N-body simulation of an isolated Milky Way-like disc galaxy, we found that the transient and dynamic spiral arms induce compressing breathing motions when the arms are in the growth phase, while the expanding breathing motion appears in the disruption phase. The observed clear alignment of the compressing breathing motion with the Local arm is similar to what is seen in the growth phase of the simulated spiral arms. Hence, we suggest that the Local arm’s compressing breathing motion can be explained by the Local arm being in the growth phase of a transient and dynamic spiral arm. We also identified the tentative signatures of the expanding breathing motion associated with the Perseus arm and also the Outer arm coinciding with the compressing breathing motion. This may infer that the Perseus and Outer arms are in the disruption and growth phases, respectively.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Theoretical models of spiral arms suggest that the spiral arms provoke a vertical bulk motion in disc stars. By analysing the breathing motion, a coherent asymmetric vertical motion around the mid-plane of the Milky Way disc, with Gaia DR3, we found that a compressing breathing motion presents along the Local arm. On the other hand, with an N-body simulation of an isolated Milky Way-like disc galaxy, we found that the transient and dynamic spiral arms induce compressing breathing motions when the arms are in the growth phase, while the expanding breathing motion appears in the disruption phase. The observed clear alignment of the compressing breathing motion with the Local arm is similar to what is seen in the growth phase of the simulated spiral arms. Hence, we suggest that the Local arm’s compressing breathing motion can be explained by the Local arm being in the growth phase of a transient and dynamic spiral arm. We also identified the tentative signatures of the expanding breathing motion associated with the Perseus arm and also the Outer arm coinciding with the compressing breathing motion. This may infer that the Perseus and Outer arms are in the disruption and growth phases, respectively.
期刊介绍:
For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.