Mixed Convection of Cu–H2O Nanofluid in a Darcy–Forchheimer Porous Medium Microchannel with Thermal Radiation and Convective Heating

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-10-01 DOI:10.1166/jon.2023.2097
Ebba Hindebu Rikitu, O. Makinde
{"title":"Mixed Convection of Cu–H2O Nanofluid in a Darcy–Forchheimer Porous Medium Microchannel with Thermal Radiation and Convective Heating","authors":"Ebba Hindebu Rikitu, O. Makinde","doi":"10.1166/jon.2023.2097","DOIUrl":null,"url":null,"abstract":"Heat transfer and convective flow of Cu–H2O nanofluid in a microchannel with thermal radiation has many attributes in engineering, industries, and biomedical sciences including cooling of electronics, drug delivery, cancer therapy, optics, missiles, satellites, and lubricants. Therefore, this paper aims to investigate the hydrodynamical behaviors and heat transfer characteristics of Cu–H2O nanofluid through a porous medium microchannel with thermal radiation and convective heating. The highly non-linear partial differential equations that govern the momentum and energy equations are formulated, non-dimensionalized, transformed into ordinary differential equations and solved numerically via the fourth order Runge-Kutta integration scheme. Consequently, the numerical simulation reveals that the nanofluid velocity and temperature profiles show a rising pattern with increasing values of the pressure gradient parameter, variable viscosity parameter, Darcy number, thermal Grashof number and Eckert number. The temperature profile escalates with the Prandtl number however it diminishes with the Biot number, Forchheimer number, suction/injection Reynolds number and nanoparticles volume fraction. Furthermore, the thermal radiation parameter indicates a retarding effect on the temperature profile and hence, radiation quite effectively controls the microchannel temperature distribution which plays a significant role in cooling the flow transport system. The skin friction coefficient at both microchannel walls indicates a rising pattern with the suction/injection Reynolds number, thermal Grashof number, Eckert number and Darcy number. Moreover, at both microchannel walls the heat transfer rate enhances for large values of the suction/injection Reynolds number, thermal Grashof number, Eckert number, variable viscosity parameter and Darcy number whereas it decreases with the thermal radiation parameter, Forchheimer number and nanoparticles volume fraction. The Biot number reveals an opposite effect on the heat transfer rate at the left and right walls of the microvhannel.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":"71 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heat transfer and convective flow of Cu–H2O nanofluid in a microchannel with thermal radiation has many attributes in engineering, industries, and biomedical sciences including cooling of electronics, drug delivery, cancer therapy, optics, missiles, satellites, and lubricants. Therefore, this paper aims to investigate the hydrodynamical behaviors and heat transfer characteristics of Cu–H2O nanofluid through a porous medium microchannel with thermal radiation and convective heating. The highly non-linear partial differential equations that govern the momentum and energy equations are formulated, non-dimensionalized, transformed into ordinary differential equations and solved numerically via the fourth order Runge-Kutta integration scheme. Consequently, the numerical simulation reveals that the nanofluid velocity and temperature profiles show a rising pattern with increasing values of the pressure gradient parameter, variable viscosity parameter, Darcy number, thermal Grashof number and Eckert number. The temperature profile escalates with the Prandtl number however it diminishes with the Biot number, Forchheimer number, suction/injection Reynolds number and nanoparticles volume fraction. Furthermore, the thermal radiation parameter indicates a retarding effect on the temperature profile and hence, radiation quite effectively controls the microchannel temperature distribution which plays a significant role in cooling the flow transport system. The skin friction coefficient at both microchannel walls indicates a rising pattern with the suction/injection Reynolds number, thermal Grashof number, Eckert number and Darcy number. Moreover, at both microchannel walls the heat transfer rate enhances for large values of the suction/injection Reynolds number, thermal Grashof number, Eckert number, variable viscosity parameter and Darcy number whereas it decreases with the thermal radiation parameter, Forchheimer number and nanoparticles volume fraction. The Biot number reveals an opposite effect on the heat transfer rate at the left and right walls of the microvhannel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
达西-福克海默多孔介质微通道中的 Cu-H2O 纳米流体与热辐射和对流加热的混合对流
具有热辐射的微通道中 Cu-H2O 纳米流体的传热和对流在工程、工业和生物医学科学中具有许多特性,包括电子设备冷却、药物输送、癌症治疗、光学、导弹、卫星和润滑剂。因此,本文旨在研究通过多孔介质微通道的 Cu-H2O 纳米流体在热辐射和对流加热条件下的流体力学行为和传热特性。本文提出了支配动量和能量方程的高度非线性偏微分方程,并将其非量纲化,转化为常微分方程,通过四阶 Runge-Kutta 积分方案进行数值求解。数值模拟结果表明,随着压力梯度参数、可变粘度参数、达西数、热格拉肖夫数和埃克特数值的增加,纳米流体的速度和温度曲线呈上升趋势。温度曲线随着普朗特数的增加而上升,但随着比奥特数、福希海默尔数、吸入/喷射雷诺数和纳米颗粒体积分数的增加而下降。此外,热辐射参数显示出对温度曲线的延缓作用,因此辐射能有效控制微通道的温度分布,这对冷却流动传输系统起着重要作用。两个微通道壁上的表皮摩擦系数随着吸入/喷射雷诺数、热格拉肖夫数、埃克特数和达西数的增加而上升。此外,在两个微通道壁上,当吸入/注入雷诺数、热格拉肖夫数、埃克特数、可变粘度参数和达西数的数值较大时,热传导率会提高,而当热辐射参数、福克海默数和纳米颗粒体积分数较大时,热传导率会降低。比奥特数对微通道左壁和右壁的传热速率有相反的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
A Revised Work on the Rayleigh-Bénard Instability of Nanofluid in a Porous Medium Layer Magnetohydrodynamic Darcy-Forchheimer Squeezed Flow of Casson Nanofluid Over Horizontal Channel with Activation Energy and Thermal Radiation Computational Study of Crossed-Cavity Hybrid Nanofluid Turbulent Forced Convection for Enhanced Concentrated Solar Panel Cooling A Local Thermal Non-Equilibrium Approach to an Electromagnetic Hybrid Nanofluid Flow in a Non-Parallel Riga Plate Channel Mixed Convection Flow Analysis of Carreau Fluid Over a Vertical Stretching/Shrinking Sheet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1