Optimizing Rapid Prototype Development Through Femtosecond Laser Ablation and Finite Element Method Simulation for Enhanced Separation in Microfluidics

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-10-01 DOI:10.1166/jon.2023.2102
E. Hamad, Ahmed Albagdady, Samer I. Al-Gharabli, Hamza Alkhadire, Yousef Alnaser, Hakim Shadid, Ahmed Abdo, Andreas Dietzel, A. Al-Halhouli
{"title":"Optimizing Rapid Prototype Development Through Femtosecond Laser Ablation and Finite Element Method Simulation for Enhanced Separation in Microfluidics","authors":"E. Hamad, Ahmed Albagdady, Samer I. Al-Gharabli, Hamza Alkhadire, Yousef Alnaser, Hakim Shadid, Ahmed Abdo, Andreas Dietzel, A. Al-Halhouli","doi":"10.1166/jon.2023.2102","DOIUrl":null,"url":null,"abstract":"In recent years, microfluidic systems have emerged as promising tools for blood separation and analysis. However, conventional methods for prototyping microfluidic systems can be slow and expensive. In this study, we present a novel approach to rapid prototyping that combines femtosecond laser ablation and finite element method (FEM) simulation. The optimization of the prototyping process was achieved through systematic characterization of the laser ablation process and the application of FEM simulation to predict the flow behavior of the microfluidic devices. Using a dean-coupled inertial flow device (DCIFD) that comprises one channel bend and three outlets side-channels. DCIF is a phenomenon that occurs in curved microfluidic channels and is considered by the existence of inconsequential flow patterns perpendicular to the main flow direction. The DCIF can enhance the separation efficiency in microfluidic devices by inducing lateral migration of particles or cells towards specific locations along the channel. This lateral migration can be controlled by adjusting the curvature and dimensions of the channel, as well as the flow rate and properties of the fluid. Overall, DCIF can provide a valuable means of achieving efficient and high-throughput separation of particles or cells in microfluidic devices. Therefore, various microfluidics designs that contain different outlet channels were studied in this research to improve blood plasma separation efficiency. Results from imitated blood flow experiments showed positive results for fluid flow and particle separation. The study also found that incorporating three various channel widths is the key to achieving efficient plasma separation, indicating that this result could serve as a guideline for future microfluidics geometry specifications in the field of blood plasma separation. According to the FEM simulation, the highest separation percentage for both microparticle sizes was obtained by incorporating a variable outlet channel width into the same microfluidic device. The FEM simulation revealed that around 95% of the larger microparticles separated while 98% of the smaller microparticles separated. This is consistent with the imitated blood separation results, which showed that 91% of the larger microparticles separated and around 93% of the smaller microparticles were separated. Overall, our results demonstrate that the combination of femtosecond laser ablation and FEM simulation significantly improved the prototyping speed and efficiency while maintaining high blood separation performance.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, microfluidic systems have emerged as promising tools for blood separation and analysis. However, conventional methods for prototyping microfluidic systems can be slow and expensive. In this study, we present a novel approach to rapid prototyping that combines femtosecond laser ablation and finite element method (FEM) simulation. The optimization of the prototyping process was achieved through systematic characterization of the laser ablation process and the application of FEM simulation to predict the flow behavior of the microfluidic devices. Using a dean-coupled inertial flow device (DCIFD) that comprises one channel bend and three outlets side-channels. DCIF is a phenomenon that occurs in curved microfluidic channels and is considered by the existence of inconsequential flow patterns perpendicular to the main flow direction. The DCIF can enhance the separation efficiency in microfluidic devices by inducing lateral migration of particles or cells towards specific locations along the channel. This lateral migration can be controlled by adjusting the curvature and dimensions of the channel, as well as the flow rate and properties of the fluid. Overall, DCIF can provide a valuable means of achieving efficient and high-throughput separation of particles or cells in microfluidic devices. Therefore, various microfluidics designs that contain different outlet channels were studied in this research to improve blood plasma separation efficiency. Results from imitated blood flow experiments showed positive results for fluid flow and particle separation. The study also found that incorporating three various channel widths is the key to achieving efficient plasma separation, indicating that this result could serve as a guideline for future microfluidics geometry specifications in the field of blood plasma separation. According to the FEM simulation, the highest separation percentage for both microparticle sizes was obtained by incorporating a variable outlet channel width into the same microfluidic device. The FEM simulation revealed that around 95% of the larger microparticles separated while 98% of the smaller microparticles separated. This is consistent with the imitated blood separation results, which showed that 91% of the larger microparticles separated and around 93% of the smaller microparticles were separated. Overall, our results demonstrate that the combination of femtosecond laser ablation and FEM simulation significantly improved the prototyping speed and efficiency while maintaining high blood separation performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过飞秒激光烧蚀和有限元法模拟优化快速原型开发,增强微流体中的分离效果
近年来,微流控系统已成为血液分离和分析的理想工具。然而,传统的微流控系统原型制作方法既缓慢又昂贵。在本研究中,我们提出了一种结合飞秒激光烧蚀和有限元法(FEM)模拟的新型快速原型制作方法。通过对激光烧蚀过程进行系统表征,并应用有限元模拟预测微流控器件的流动行为,实现了原型制作过程的优化。使用由一个弯曲通道和三个出口侧通道组成的德安耦合惯性流装置(DCIFD)。DCIF 是一种发生在弯曲微流体通道中的现象,是指存在与主流动方向垂直的不规则流动模式。DCIF 可诱导颗粒或细胞向通道上的特定位置横向迁移,从而提高微流体设备的分离效率。这种横向迁移可以通过调整通道的曲率和尺寸以及流速和流体特性来控制。总之,DCIF 是在微流体设备中实现颗粒或细胞高效、高通量分离的重要手段。因此,本研究对包含不同出口通道的各种微流控设计进行了研究,以提高血浆分离效率。模仿血流实验的结果表明,流体流动和颗粒分离效果良好。研究还发现,采用三种不同宽度的通道是实现高效血浆分离的关键,这表明该结果可作为未来血浆分离领域微流控几何规格的指导原则。根据有限元模拟,在同一微流体装置中加入可变出口通道宽度,可获得两种微粒尺寸的最高分离率。有限元模拟显示,约 95% 的较大微粒分离了,而 98% 的较小微粒分离了。这与模仿血液分离的结果一致,后者显示 91% 的较大微颗粒分离,约 93% 的较小微颗粒分离。总之,我们的研究结果表明,飞秒激光烧蚀与有限元模拟的结合大大提高了原型制作的速度和效率,同时保持了较高的血液分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1