Unsteady 3D MHD Boundary Layer Stream for Non-Newtonian Power-Law Fluid Near Stagnation Point of Moving Surfaces

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-10-01 DOI:10.1166/jon.2023.2098
Mahesha, V. Mohan Babu
{"title":"Unsteady 3D MHD Boundary Layer Stream for Non-Newtonian Power-Law Fluid Near Stagnation Point of Moving Surfaces","authors":"Mahesha, V. Mohan Babu","doi":"10.1166/jon.2023.2098","DOIUrl":null,"url":null,"abstract":"An unsteady three-dimensional MHD boundary layer is a fluid flow region near a surface where magnetic fields are present and interact with the fluid flow, causing it to become unsteady. This type of flow is commonly found in various astrophysical and technological applications, such as in plasmas and fusion reactors. The 3D nature of the flow introduces additional complexities to the flow dynamics, making the study and modeling of unsteady MHD boundary layers a challenging and active area of research. The unsteady boundary layer flow of fluid over a moving stagnation surface is theoretically examined in the current work with the impression of a magnetic field. The exact outcomes of the governing equations for the flow domain are obtained by utilizing the shooting phenomena. The specified analytical outcomes are also obtained for some cases. Detailed discussions of the parameters involved are confirmed both physically and graphically. Numerical results for both profiles are presented graphically. The study and modeling of unsteady 3D MHD boundary layers is imperative for a thorough understanding of various physical phenomena, improving the performance of technological systems, and advancing our knowledge of fluid dynamics.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An unsteady three-dimensional MHD boundary layer is a fluid flow region near a surface where magnetic fields are present and interact with the fluid flow, causing it to become unsteady. This type of flow is commonly found in various astrophysical and technological applications, such as in plasmas and fusion reactors. The 3D nature of the flow introduces additional complexities to the flow dynamics, making the study and modeling of unsteady MHD boundary layers a challenging and active area of research. The unsteady boundary layer flow of fluid over a moving stagnation surface is theoretically examined in the current work with the impression of a magnetic field. The exact outcomes of the governing equations for the flow domain are obtained by utilizing the shooting phenomena. The specified analytical outcomes are also obtained for some cases. Detailed discussions of the parameters involved are confirmed both physically and graphically. Numerical results for both profiles are presented graphically. The study and modeling of unsteady 3D MHD boundary layers is imperative for a thorough understanding of various physical phenomena, improving the performance of technological systems, and advancing our knowledge of fluid dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动表面停滞点附近非牛顿动力法流体的非稳态三维 MHD 边界层流
非稳态三维 MHD 边界层是表面附近的流体流动区域,其中存在磁场并与流体流动相互作用,导致流体流动变得不稳定。这种流动常见于各种天体物理和技术应用中,如等离子体和核聚变反应堆。流动的三维性质给流动动力学带来了额外的复杂性,使非稳态 MHD 边界层的研究和建模成为一个具有挑战性的活跃研究领域。本研究从理论上研究了流体在移动停滞面上的非稳态边界层流动,并对磁场进行了分析。通过利用射流现象,获得了流域控制方程的精确结果。在某些情况下还获得了指定的分析结果。有关参数的详细讨论在物理和图形上都得到了证实。两种剖面的数值结果均以图表形式呈现。对非稳态三维 MHD 边界层的研究和建模对于透彻理解各种物理现象、提高技术系统的性能以及增进我们的流体动力学知识都是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1