Spatial quantiles on the hypersphere

Dimitri Konen, D. Paindaveine
{"title":"Spatial quantiles on the hypersphere","authors":"Dimitri Konen, D. Paindaveine","doi":"10.1214/23-aos2332","DOIUrl":null,"url":null,"abstract":"We propose a concept of quantiles for probability measures on the unit hypersphere S d − 1 of R d . The innermost quantile is the Fréchet median, that is, the L 1 -analog of the Fréchet mean. The proposed quantiles μ mα,u are directional in nature: they are indexed by a scalar order α ∈ [ 0 , 1 ] and a unit vector u in the tangent space T m S d − 1 to S d − 1 at m . To ensure computability in any dimension d , our quantiles are essentially obtained by considering the Euclidean (Chaudhuri ( J. Amer. Statist. Assoc. 91 (1996) 862–872)) spatial quantiles in a suitable stereographic projection of S d − 1 onto T m S d − 1 . Despite this link with Euclidean spatial quantiles, studying the proposed spherical quantiles requires understanding the nature of the (Chaudhuri (1996)) quantiles in a version of the projective space where all points at infinity are identified. We thoroughly investigate the structural properties of our quan-tiles and we further study the asymptotic behavior of their sample versions, which requires controlling the impact of estimating m . Our spherical quantile concept also allows for companion concepts of ranks and depth on the hy-persphere. We illustrate the relevance of our construction by considering two inferential applications, related to supervised classification and to testing for rotational symmetry.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a concept of quantiles for probability measures on the unit hypersphere S d − 1 of R d . The innermost quantile is the Fréchet median, that is, the L 1 -analog of the Fréchet mean. The proposed quantiles μ mα,u are directional in nature: they are indexed by a scalar order α ∈ [ 0 , 1 ] and a unit vector u in the tangent space T m S d − 1 to S d − 1 at m . To ensure computability in any dimension d , our quantiles are essentially obtained by considering the Euclidean (Chaudhuri ( J. Amer. Statist. Assoc. 91 (1996) 862–872)) spatial quantiles in a suitable stereographic projection of S d − 1 onto T m S d − 1 . Despite this link with Euclidean spatial quantiles, studying the proposed spherical quantiles requires understanding the nature of the (Chaudhuri (1996)) quantiles in a version of the projective space where all points at infinity are identified. We thoroughly investigate the structural properties of our quan-tiles and we further study the asymptotic behavior of their sample versions, which requires controlling the impact of estimating m . Our spherical quantile concept also allows for companion concepts of ranks and depth on the hy-persphere. We illustrate the relevance of our construction by considering two inferential applications, related to supervised classification and to testing for rotational symmetry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超球面上的空间定量
我们为 R d 的单位超球 S d - 1 上的概率度量提出了量值的概念。最内层的量值是弗雷谢特中值,即弗雷谢特均值的 L 1 类似值。建议的量化值 μ mα,u 具有方向性:它们由标量阶 α∈ [ 0 , 1 ] 和切线空间 T m S d - 1 中的单位向量 u 在 m 处与 S d - 1 进行索引。为了确保在任何维度 d 中的可计算性,我们的量纲基本上是通过考虑欧几里得(Chaudhuri ( J. Amer. Statist.Statist.Assoc. 91 (1996) 862-872))的空间定量在 S d - 1 到 T m S d - 1 的合适立体投影中得到。尽管与欧几里得空间定量有这种联系,但要研究所提出的球面定量,就必须了解(乔杜里(1996))定量在投影空间版本中的性质,在这个版本中,所有的同位点都是确定的。我们深入研究了我们的量化模型的结构特性,并进一步研究了其样本版本的渐近行为,这需要控制估计 m 的影响。我们的球面量化概念还允许在 hy 球面上使用等级和深度的辅助概念。我们通过考虑与监督分类和旋转对称性测试相关的两个推理应用来说明我们的构造的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1