AfriSpeech-200: Pan-African Accented Speech Dataset for Clinical and General Domain ASR

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Transactions of the Association for Computational Linguistics Pub Date : 2023-09-30 DOI:10.1162/tacl_a_00627
Tobi Olatunji, Tejumade Afonja, Aditya Yadavalli, C. Emezue, Sahib Singh, Bonaventure F. P. Dossou, Joanne Osuchukwu, Salomey Osei, A. Tonja, Naome A. Etori, Clinton Mbataku
{"title":"AfriSpeech-200: Pan-African Accented Speech Dataset for Clinical and General Domain ASR","authors":"Tobi Olatunji, Tejumade Afonja, Aditya Yadavalli, C. Emezue, Sahib Singh, Bonaventure F. P. Dossou, Joanne Osuchukwu, Salomey Osei, A. Tonja, Naome A. Etori, Clinton Mbataku","doi":"10.1162/tacl_a_00627","DOIUrl":null,"url":null,"abstract":"Abstract Africa has a very poor doctor-to-patient ratio. At very busy clinics, doctors could see 30+ patients per day—a heavy patient burden compared with developed countries—but productivity tools such as clinical automatic speech recognition (ASR) are lacking for these overworked clinicians. However, clinical ASR is mature, even ubiquitous, in developed nations, and clinician-reported performance of commercial clinical ASR systems is generally satisfactory. Furthermore, the recent performance of general domain ASR is approaching human accuracy. However, several gaps exist. Several publications have highlighted racial bias with speech-to-text algorithms and performance on minority accents lags significantly. To our knowledge, there is no publicly available research or benchmark on accented African clinical ASR, and speech data is non-existent for the majority of African accents. We release AfriSpeech, 200hrs of Pan-African English speech, 67,577 clips from 2,463 unique speakers across 120 indigenous accents from 13 countries for clinical and general domain ASR, a benchmark test set, with publicly available pre-trained models with SOTA performance on the AfriSpeech benchmark.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"89 1","pages":"1669-1685"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00627","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Africa has a very poor doctor-to-patient ratio. At very busy clinics, doctors could see 30+ patients per day—a heavy patient burden compared with developed countries—but productivity tools such as clinical automatic speech recognition (ASR) are lacking for these overworked clinicians. However, clinical ASR is mature, even ubiquitous, in developed nations, and clinician-reported performance of commercial clinical ASR systems is generally satisfactory. Furthermore, the recent performance of general domain ASR is approaching human accuracy. However, several gaps exist. Several publications have highlighted racial bias with speech-to-text algorithms and performance on minority accents lags significantly. To our knowledge, there is no publicly available research or benchmark on accented African clinical ASR, and speech data is non-existent for the majority of African accents. We release AfriSpeech, 200hrs of Pan-African English speech, 67,577 clips from 2,463 unique speakers across 120 indigenous accents from 13 countries for clinical and general domain ASR, a benchmark test set, with publicly available pre-trained models with SOTA performance on the AfriSpeech benchmark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AfriSpeech-200:用于临床和通用领域 ASR 的泛非洲重音语音数据集
摘要 非洲的医患比例非常低。在非常繁忙的诊所,医生每天要看 30 多位病人,与发达国家相比,病人负担沉重,但这些过度劳累的临床医生却缺乏临床自动语音识别 (ASR) 等提高工作效率的工具。然而,在发达国家,临床自动语音识别技术已经成熟,甚至无处不在,而且临床医生报告的商用临床自动语音识别系统的性能普遍令人满意。此外,通用领域 ASR 的最新性能也接近人类准确度。然而,仍存在一些差距。一些出版物强调了语音到文本算法的种族偏见,少数民族口音的性能明显落后。据我们所知,目前还没有关于非洲口音临床 ASR 的公开研究或基准,大多数非洲口音的语音数据也不存在。我们发布了 AfriSpeech、200 小时的泛非英语语音、67,577 个片段,这些片段来自 13 个国家的 2,463 位独特的演讲者,涉及 120 种本地口音,用于临床和通用领域的 ASR,这是一个基准测试集,并公开了在 AfriSpeech 基准上具有 SOTA 性能的预训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
期刊最新文献
General then Personal: Decoupling and Pre-training for Personalized Headline Generation MissModal: Increasing Robustness to Missing Modality in Multimodal Sentiment Analysis Removing Backdoors in Pre-trained Models by Regularized Continual Pre-training Learning More from Mixed Emotions: A Label Refinement Method for Emotion Recognition in Conversations An Efficient Self-Supervised Cross-View Training For Sentence Embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1