Optimizing Data Pipelines for Machine Learning in Feature Stores

Rui Liu, Kwanghyun Park, Fotis Psallidas, Xiaoyong Zhu, Jinghui Mo, Rathijit Sen, Matteo Interlandi, Konstantinos Karanasos, Yuanyuan Tian, Jesús Camacho-Rodríguez
{"title":"Optimizing Data Pipelines for Machine Learning in Feature Stores","authors":"Rui Liu, Kwanghyun Park, Fotis Psallidas, Xiaoyong Zhu, Jinghui Mo, Rathijit Sen, Matteo Interlandi, Konstantinos Karanasos, Yuanyuan Tian, Jesús Camacho-Rodríguez","doi":"10.14778/3625054.3625060","DOIUrl":null,"url":null,"abstract":"Data pipelines (i.e., converting raw data to features) are critical for machine learning (ML) models, yet their development and management is time-consuming. Feature stores have recently emerged as a new \"DBMS-for-ML\" with the premise of enabling data scientists and engineers to define and manage their data pipelines. While current feature stores fulfill their promise from a functionality perspective, they are resource-hungry---with ample opportunities for implementing database-style optimizations to enhance their performance. In this paper, we propose a novel set of optimizations specifically targeted for point-in-time join, which is a critical operation in data pipelines. We implement these optimizations on top of Feathr: a widely-used feature store, and evaluate them on use cases from both the TPCx-AI benchmark and real-world online retail scenarios. Our thorough experimental analysis shows that our optimizations can accelerate data pipelines by up to 3× over state-of-the-art baselines.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"24 1","pages":"4230-4239"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3625054.3625060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data pipelines (i.e., converting raw data to features) are critical for machine learning (ML) models, yet their development and management is time-consuming. Feature stores have recently emerged as a new "DBMS-for-ML" with the premise of enabling data scientists and engineers to define and manage their data pipelines. While current feature stores fulfill their promise from a functionality perspective, they are resource-hungry---with ample opportunities for implementing database-style optimizations to enhance their performance. In this paper, we propose a novel set of optimizations specifically targeted for point-in-time join, which is a critical operation in data pipelines. We implement these optimizations on top of Feathr: a widely-used feature store, and evaluate them on use cases from both the TPCx-AI benchmark and real-world online retail scenarios. Our thorough experimental analysis shows that our optimizations can accelerate data pipelines by up to 3× over state-of-the-art baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在特征库中优化机器学习的数据管道
数据管道(即将原始数据转换为特征)对于机器学习(ML)模型至关重要,但其开发和管理却非常耗时。最近,特征库作为一种新的 "DBMS-for-ML "出现了,其前提是让数据科学家和工程师能够定义和管理他们的数据管道。虽然从功能角度看,当前的特征库实现了它们的承诺,但它们却非常耗费资源--有大量机会实施数据库式的优化来提高它们的性能。在本文中,我们提出了一套新颖的优化方案,专门针对数据管道中的关键操作--时间点连接。我们在广泛使用的特征存储 Feathr 上实现了这些优化,并在 TPCx-AI 基准和真实世界在线零售场景的使用案例中对其进行了评估。全面的实验分析表明,与最先进的基线相比,我们的优化能将数据管道的速度提高 3 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cryptographically Secure Private Record Linkage Using Locality-Sensitive Hashing Utility-aware Payment Channel Network Rebalance Relational Query Synthesis ⋈ Decision Tree Learning Billion-Scale Bipartite Graph Embedding: A Global-Local Induced Approach Query Refinement for Diversity Constraint Satisfaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1