PaniniQA: Enhancing Patient Education Through Interactive Question Answering

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Transactions of the Association for Computational Linguistics Pub Date : 2023-08-07 DOI:10.1162/tacl_a_00616
Pengshan Cai, Zonghai Yao, Fei Liu, Dakuo Wang, Meghan Reilly, Huixue Zhou, Lingxi Li, Yifan Cao, Alok Kapoor, Adarsha S. Bajracharya, D. Berlowitz, Hongfeng Yu
{"title":"PaniniQA: Enhancing Patient Education Through Interactive Question Answering","authors":"Pengshan Cai, Zonghai Yao, Fei Liu, Dakuo Wang, Meghan Reilly, Huixue Zhou, Lingxi Li, Yifan Cao, Alok Kapoor, Adarsha S. Bajracharya, D. Berlowitz, Hongfeng Yu","doi":"10.1162/tacl_a_00616","DOIUrl":null,"url":null,"abstract":"Abstract A patient portal allows discharged patients to access their personalized discharge instructions in electronic health records (EHRs). However, many patients have difficulty understanding or memorizing their discharge instructions (Zhao et al., 2017). In this paper, we present PaniniQA, a patient-centric interactive question answering system designed to help patients understand their discharge instructions. PaniniQA first identifies important clinical content from patients’ discharge instructions and then formulates patient-specific educational questions. In addition, PaniniQA is also equipped with answer verification functionality to provide timely feedback to correct patients’ misunderstandings. Our comprehensive automatic & human evaluation results demonstrate our PaniniQA is capable of improving patients’ mastery of their medical instructions through effective interactions.1","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"2 1","pages":"1518-1536"},"PeriodicalIF":4.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00616","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A patient portal allows discharged patients to access their personalized discharge instructions in electronic health records (EHRs). However, many patients have difficulty understanding or memorizing their discharge instructions (Zhao et al., 2017). In this paper, we present PaniniQA, a patient-centric interactive question answering system designed to help patients understand their discharge instructions. PaniniQA first identifies important clinical content from patients’ discharge instructions and then formulates patient-specific educational questions. In addition, PaniniQA is also equipped with answer verification functionality to provide timely feedback to correct patients’ misunderstandings. Our comprehensive automatic & human evaluation results demonstrate our PaniniQA is capable of improving patients’ mastery of their medical instructions through effective interactions.1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PaniniQA:通过交互式问题解答加强患者教育
摘要 患者门户网站允许出院患者访问电子健康记录(EHR)中的个性化出院指导。然而,许多患者很难理解或记住他们的出院指导(Zhao 等人,2017)。在本文中,我们介绍了 PaniniQA,这是一个以患者为中心的交互式问题解答系统,旨在帮助患者理解他们的出院指导。PaniniQA 首先从患者的出院指导中识别出重要的临床内容,然后制定出针对患者的教育问题。此外,PaniniQA 还配备了答案验证功能,可提供及时反馈,纠正患者的误解。我们的自动和人工综合评估结果表明,PaniniQA 能够通过有效的互动提高患者对医嘱的掌握程度1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
期刊最新文献
General then Personal: Decoupling and Pre-training for Personalized Headline Generation MissModal: Increasing Robustness to Missing Modality in Multimodal Sentiment Analysis Removing Backdoors in Pre-trained Models by Regularized Continual Pre-training Learning More from Mixed Emotions: A Label Refinement Method for Emotion Recognition in Conversations An Efficient Self-Supervised Cross-View Training For Sentence Embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1