Total Kinetic Energy of Fission Fragments based on Fission Product Data

Rizal Kurniadi
{"title":"Total Kinetic Energy of Fission Fragments based on Fission Product Data","authors":"Rizal Kurniadi","doi":"10.5614/itb.ijp.2023.34.1.1","DOIUrl":null,"url":null,"abstract":"Total kinetic energy (TKE) is the physical quantity that must be acquired during a nuclear fission reaction. This energy is used for various purposes, primarily to determine the spectrum of the second proton. This spectrum is advantageous in the design of nuclear reactors. Various techniques for calculating TKE, from microscopic to macroscopic, have been carried out, from statistical to quantum reviews. This whole technique is solely for obtaining TKE accurately. This paper will review the TKE calculation based on the fission products' experimental results. This fission product data can be in the form of raw experimental data or evaluated data. The calculations are carried out within a macroscopic and statistical review framework. The macroscopic view is a liquid drop model, while the statistics use the random number technique. Because the liquid drop model and the random number technique are very standard, this paper does not review them.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2023.34.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Total kinetic energy (TKE) is the physical quantity that must be acquired during a nuclear fission reaction. This energy is used for various purposes, primarily to determine the spectrum of the second proton. This spectrum is advantageous in the design of nuclear reactors. Various techniques for calculating TKE, from microscopic to macroscopic, have been carried out, from statistical to quantum reviews. This whole technique is solely for obtaining TKE accurately. This paper will review the TKE calculation based on the fission products' experimental results. This fission product data can be in the form of raw experimental data or evaluated data. The calculations are carried out within a macroscopic and statistical review framework. The macroscopic view is a liquid drop model, while the statistics use the random number technique. Because the liquid drop model and the random number technique are very standard, this paper does not review them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于裂变产物数据的裂变碎片总动能
总动能(TKE)是核裂变反应过程中必须获得的物理量。该能量有多种用途,主要用于确定第二个质子的频谱。该频谱对核反应堆的设计非常有利。计算 TKE 的各种技术,从微观到宏观,从统计到量子评论,都已得到应用。整个技术完全是为了准确地获得 TKE。本文将回顾基于裂变产物实验结果的 TKE 计算。裂变产物数据可以是原始实验数据或评估数据。计算在宏观和统计审查框架内进行。宏观上采用液滴模型,统计上采用随机数技术。由于液滴模型和随机数技术是非常标准的,因此本文不对其进行评述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetoteluric Modelling in High Noise of Low Frequency Signal Density Functional Theory Simulation of Iron-Montmorillonite as Carbon Dioxide Adsorber Analysis of the Effect of Tube Current, Slice Thickness, and Tube Voltage on Ct Scan Image Noise using the Noise Power Spectrum (NPS) Method Determination of Fractionation Scheme Based on Repair Effect Using Equivalent Uniform Dose (EUD) Model Investigation of hydraulic jump by using the Moving Particle Semi-Implicit method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1