EFFECT OF DYSPROSIUM DOPING ON MICROSTRUCTURE AND DEGREE OF TEXTURING OF BISMUTH TELLURIDE-BASED THERMOELECTRIC MATERIALS

M. Yaprintsev, O. N. Ivanov
{"title":"EFFECT OF DYSPROSIUM DOPING ON MICROSTRUCTURE AND DEGREE OF TEXTURING OF BISMUTH TELLURIDE-BASED THERMOELECTRIC MATERIALS","authors":"M. Yaprintsev, O. N. Ivanov","doi":"10.14489/glc.2023.08.pp.039-047","DOIUrl":null,"url":null,"abstract":"The purpose of this work was to prepare and identify the features of the microstructure and the degree of texturing of the thermoelectric material Bi2Te2.7Se0.3 doped with dysprosium. Textured Bi2-xDyxTe2.7Se0.3 compounds with x = 0.0000; 0.0010; 0.0025; 0.0050; 0.0100 and 0.0200 were prepared by using solvothermal synthesis and spark plasma sintering of starting powders. Dy-doping results in several interconnected effects. First of them is reducing in size of particles in starting powders with increasing x. This effect is attributed to increasing in ionic bonding fraction in polar covalent Bi(Dy)–Te bonds with increasing Dy content due to difference in electronegativity of Bi and Dy. With increasing x, grain size in bulk samples is also reducing, which is governed by relevant changing in the size of particles in the starting powders with different dopant content. This effect also results in enhancing in texturing degree in samples.","PeriodicalId":445802,"journal":{"name":"Steklo i Keramika","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steklo i Keramika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14489/glc.2023.08.pp.039-047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work was to prepare and identify the features of the microstructure and the degree of texturing of the thermoelectric material Bi2Te2.7Se0.3 doped with dysprosium. Textured Bi2-xDyxTe2.7Se0.3 compounds with x = 0.0000; 0.0010; 0.0025; 0.0050; 0.0100 and 0.0200 were prepared by using solvothermal synthesis and spark plasma sintering of starting powders. Dy-doping results in several interconnected effects. First of them is reducing in size of particles in starting powders with increasing x. This effect is attributed to increasing in ionic bonding fraction in polar covalent Bi(Dy)–Te bonds with increasing Dy content due to difference in electronegativity of Bi and Dy. With increasing x, grain size in bulk samples is also reducing, which is governed by relevant changing in the size of particles in the starting powders with different dopant content. This effect also results in enhancing in texturing degree in samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂镝对碲化铋热电材料微观结构和纹理化程度的影响
这项工作的目的是制备和确定掺杂镝的热电材料 Bi2Te2.7Se0.3 的微观结构特征和纹理程度。通过溶热合成和火花等离子烧结起始粉末,制备了 x = 0.0000; 0.0010; 0.0025; 0.0050; 0.0100 和 0.0200 的纹理 Bi2-xDyxTe2.7Se0.3 化合物。掺杂镝会产生几种相互关联的效应。由于 Bi 和 Dy 的电负性不同,随着 Dy 含量的增加,极性共价 Bi(Dy)-Te 键中的离子键比例也会增加。随着 x 值的增加,块状样品中的晶粒尺寸也在减小,这是由于不同掺杂剂含量的起始粉末中的颗粒尺寸发生了相关变化。这种效应还导致样品的纹理度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CHARACTERISTICS AND MORPHOLOGY OF THE PORE SPACE OF SYNTHETIZED HIGHLY POROUS Sc2O3 CERAMIC MATERIALS INFLUENCE OF THE ADDITIVE OF EUTECTIC COMPOSITION IN THE Li2O–B2O3 SYSTEM ON THE SINTERING PROCESS AND PROPERTIES OF CERAMICS BASED ON Li2MgTi3O8 TRANSPARENT GLASS-CERAMICS BASED ON LITHIUM ALUMINOSILICATE SYSTEM INVESTIGATION OF THE KINETICS OF VACUUM SINTERING OF OPTICAL LUMINESCENT CERAMICS Y3-xScxA5O12:Cr INFLUENCE OF YAG CERAMIC POWDERS GRINDING CONDITIONS OF ON THE PROPERTIES OF OPTICAL CERAMICS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1