Comment Sentiment Analysis of JNE Using K-Nearest Neighbor (KNN) Method on Twitter

Ricky Renaldo Arisandi, Sumarno Sumarno, Hamzah Setiawan
{"title":"Comment Sentiment Analysis of JNE Using K-Nearest Neighbor (KNN) Method on Twitter","authors":"Ricky Renaldo Arisandi, Sumarno Sumarno, Hamzah Setiawan","doi":"10.21070/ijins.v22i.883","DOIUrl":null,"url":null,"abstract":"Social media has evolved into a prominent public space for virtual criticism, particularly on platforms like Twitter, facilitated by widespread smartphone usage. Netizens utilize Twitter as an effective communication channel due to its accessibility and vast reach. This study focuses on sentiment analysis of comments from the public on Twitter, aiming to expedite the acquisition of accurate information about the general sentiment towards JNE (a logistics company). The K-Nearest Neighbor (KNN) classifier is employed, employing the TF-IDF weighting method to classify Indonesian language comments and assess the achieved accuracy. Highlights: Study focused on sentiment analysis of Twitter comments concerning JNE services using the K-Nearest Neighbor (KNN) method with Indonesian language text. Employed the TF-IDF weighting to classify comments and achieved an impressive 90% accuracy in sentiment analysis. The obtained classification proves valuable in evaluating public perception of JNE's services based on feedback from the social media community on Twitter.","PeriodicalId":431998,"journal":{"name":"Indonesian Journal of Innovation Studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Innovation Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21070/ijins.v22i.883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social media has evolved into a prominent public space for virtual criticism, particularly on platforms like Twitter, facilitated by widespread smartphone usage. Netizens utilize Twitter as an effective communication channel due to its accessibility and vast reach. This study focuses on sentiment analysis of comments from the public on Twitter, aiming to expedite the acquisition of accurate information about the general sentiment towards JNE (a logistics company). The K-Nearest Neighbor (KNN) classifier is employed, employing the TF-IDF weighting method to classify Indonesian language comments and assess the achieved accuracy. Highlights: Study focused on sentiment analysis of Twitter comments concerning JNE services using the K-Nearest Neighbor (KNN) method with Indonesian language text. Employed the TF-IDF weighting to classify comments and achieved an impressive 90% accuracy in sentiment analysis. The obtained classification proves valuable in evaluating public perception of JNE's services based on feedback from the social media community on Twitter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 K-Nearest Neighbor (KNN) 方法在 Twitter 上对 JNE 进行评论情感分析
在智能手机广泛使用的推动下,社交媒体已发展成为虚拟批评的重要公共空间,尤其是在 Twitter 等平台上。由于 Twitter 方便易用、覆盖面广,网民将其作为一种有效的沟通渠道。本研究的重点是对推特上的公众评论进行情感分析,旨在加快获取有关对 JNE(一家物流公司)的普遍情感的准确信息。本研究采用 K-近邻(KNN)分类器,利用 TF-IDF 加权法对印尼语评论进行分类,并评估所达到的准确性。 亮点 研究重点是使用 K-Nearest Neighbor (KNN) 方法对有关 JNE 服务的 Twitter 评论进行情感分析。 采用 TF-IDF 加权法对评论进行分类,情感分析的准确率达到了令人印象深刻的 90%。 根据推特上社交媒体社区的反馈,所获得的分类结果对评估公众对 JNE 服务的看法很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the Effect of Fraud Pentagon on Financial Statement Fraud Using M-Score and F-Score Transforming Aluminum Welding Through FSW Innovations Revolutionizing Welding Ergonomics to Mitigate Musculoskeletal Risks NaOH Treatment Revolutionizes Strength of Fiber Composites Globally Overcoming Quality Control Challenges in Car Exhaust Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1