Which client with generalized anxiety disorder benefits from a mindfulness ecological momentary intervention versus a self-monitoring app? Developing a multivariable machine learning predictive model
{"title":"Which client with generalized anxiety disorder benefits from a mindfulness ecological momentary intervention versus a self-monitoring app? Developing a multivariable machine learning predictive model","authors":"Nur Hani Zainal , Michelle G. Newman","doi":"10.1016/j.janxdis.2024.102825","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Precision medicine methods (machine learning; ML) can identify which clients with generalized anxiety disorder (GAD) benefit from </span>mindfulness<span> ecological momentary intervention (MEMI) vs. self-monitoring app (SM). We used randomized controlled trial data of MEMI vs. SM for GAD (</span></span><em>N</em><span> = 110) and tested three ML models to predict one-month follow-up reliable improvement in GAD severity, perseverative cognitions (PC), trait mindfulness<span><span> (TM), and executive function (EF). Eleven baseline predictors were tested regarding differential reliable change from MEMI vs. SM (age, sex, race, EF errors, inhibitory dyscontrol, set-shifting deficits, verbal fluency, working memory, GAD severity, TM, PC). The final top five prescriptive predictor models of all outcomes performed well (AUC = .752 .886). The following variables predicted better outcome from MEMI vs. SM: Higher GAD severity predicted more GAD improvement but less EF improvement. Elevated PC, inhibitory dyscontrol, and verbal </span>dysfluency predicted better improvement in most outcomes. Greater set-shifting and TM predicted stronger improvements in GAD symptoms and TM. Older age predicted more alleviation of GAD and PC symptoms. Women exhibited more enhancements in trait mindfulness and EF than men. White individuals benefitted more than non-White. PC, TM, EF, and sociodemographic data might help predictive models optimize intervention selection for GAD.</span></span></p></div>","PeriodicalId":48390,"journal":{"name":"Journal of Anxiety Disorders","volume":"102 ","pages":"Article 102825"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anxiety Disorders","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088761852400001X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Precision medicine methods (machine learning; ML) can identify which clients with generalized anxiety disorder (GAD) benefit from mindfulness ecological momentary intervention (MEMI) vs. self-monitoring app (SM). We used randomized controlled trial data of MEMI vs. SM for GAD (N = 110) and tested three ML models to predict one-month follow-up reliable improvement in GAD severity, perseverative cognitions (PC), trait mindfulness (TM), and executive function (EF). Eleven baseline predictors were tested regarding differential reliable change from MEMI vs. SM (age, sex, race, EF errors, inhibitory dyscontrol, set-shifting deficits, verbal fluency, working memory, GAD severity, TM, PC). The final top five prescriptive predictor models of all outcomes performed well (AUC = .752 .886). The following variables predicted better outcome from MEMI vs. SM: Higher GAD severity predicted more GAD improvement but less EF improvement. Elevated PC, inhibitory dyscontrol, and verbal dysfluency predicted better improvement in most outcomes. Greater set-shifting and TM predicted stronger improvements in GAD symptoms and TM. Older age predicted more alleviation of GAD and PC symptoms. Women exhibited more enhancements in trait mindfulness and EF than men. White individuals benefitted more than non-White. PC, TM, EF, and sociodemographic data might help predictive models optimize intervention selection for GAD.
期刊介绍:
The Journal of Anxiety Disorders is an interdisciplinary journal that publishes research papers on all aspects of anxiety disorders for individuals of all age groups, including children, adolescents, adults, and the elderly. Manuscripts that focus on disorders previously classified as anxiety disorders such as obsessive-compulsive disorder and posttraumatic stress disorder, as well as the new category of illness anxiety disorder, are also within the scope of the journal. The research areas of focus include traditional, behavioral, cognitive, and biological assessment; diagnosis and classification; psychosocial and psychopharmacological treatment; genetics; epidemiology; and prevention. The journal welcomes theoretical and review articles that significantly contribute to current knowledge in the field. It is abstracted and indexed in various databases such as Elsevier, BIOBASE, PubMed/Medline, PsycINFO, BIOSIS Citation Index, BRS Data, Current Contents - Social & Behavioral Sciences, Pascal Francis, Scopus, and Google Scholar.