{"title":"The Multi-Objective Polynomial Optimization","authors":"Jiawang Nie, Zi Yang","doi":"10.1287/moor.2023.0200","DOIUrl":null,"url":null,"abstract":"The multi-objective optimization is to optimize several objective functions over a common feasible set. Because the objectives usually do not share a common optimizer, people often consider (weakly) Pareto points. This paper studies multi-objective optimization problems that are given by polynomial functions. First, we study the geometry for (weakly) Pareto values and represent Pareto front as the boundary of a convex set. Linear scalarization problems (LSPs) and Chebyshev scalarization problems (CSPs) are typical approaches for getting (weakly) Pareto points. For LSPs, we show how to use tight relaxations to solve them and how to detect existence or nonexistence of proper weights. For CSPs, we show how to solve them by moment relaxations. Moreover, we show how to check whether a given point is a (weakly) Pareto point or not and how to detect existence or nonexistence of (weakly) Pareto points. We also study how to detect unboundedness of polynomial optimization, which is used to detect nonexistence of proper weights or (weakly) Pareto points.Funding: J. Nie is partially supported by the National Science Foundation [Grant DMS-2110780].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"16 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0200","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The multi-objective optimization is to optimize several objective functions over a common feasible set. Because the objectives usually do not share a common optimizer, people often consider (weakly) Pareto points. This paper studies multi-objective optimization problems that are given by polynomial functions. First, we study the geometry for (weakly) Pareto values and represent Pareto front as the boundary of a convex set. Linear scalarization problems (LSPs) and Chebyshev scalarization problems (CSPs) are typical approaches for getting (weakly) Pareto points. For LSPs, we show how to use tight relaxations to solve them and how to detect existence or nonexistence of proper weights. For CSPs, we show how to solve them by moment relaxations. Moreover, we show how to check whether a given point is a (weakly) Pareto point or not and how to detect existence or nonexistence of (weakly) Pareto points. We also study how to detect unboundedness of polynomial optimization, which is used to detect nonexistence of proper weights or (weakly) Pareto points.Funding: J. Nie is partially supported by the National Science Foundation [Grant DMS-2110780].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.