{"title":"What conjugate phase retrieval complex vectors can do in quaternion Euclidean spaces","authors":"Yun-Zhang Li, Ming Yang","doi":"10.1515/forum-2023-0389","DOIUrl":null,"url":null,"abstract":"Quaternion algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℍ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0331.png\" /> <jats:tex-math>{\\mathbb{H}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a noncommutative associative algebra. In recent years, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses conjugate phase retrieval problem in the quaternion Euclidean space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>M</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0330.png\" /> <jats:tex-math>{\\mathbb{H}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>M</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0275.png\" /> <jats:tex-math>{M\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Write <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>ℂ</m:mi> <m:mi>η</m:mi> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mi>ξ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi>ξ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>ξ</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>β</m:mi> <m:mo></m:mo> <m:mi>η</m:mi> </m:mrow> </m:mrow> <m:mo rspace=\"4.2pt\">,</m:mo> <m:msub> <m:mi>ξ</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:mrow> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mrow> <m:mi>β</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0316.png\" /> <jats:tex-math>{\\mathbb{C}_{\\eta}=\\{\\xi:\\xi=\\xi_{0}+\\beta\\eta,\\,\\xi_{0},\\,\\beta\\in\\mathbb{R}\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>η</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mi>i</m:mi> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mi>j</m:mi> <m:mo rspace=\"4.2pt\">,</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0298.png\" /> <jats:tex-math>{\\eta\\in\\{i,\\,j,\\,k\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We remark that not only <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>η</m:mi> <m:mi>M</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0317.png\" /> <jats:tex-math>{\\mathbb{C}_{\\eta}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-vectors cannot allow traditional conjugate phase retrieval in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>M</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0330.png\" /> <jats:tex-math>{\\mathbb{H}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, but also <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>i</m:mi> <m:mi>M</m:mi> </m:msubsup> <m:mo>∪</m:mo> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>j</m:mi> <m:mi>M</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0322.png\" /> <jats:tex-math>{\\mathbb{C}_{i}^{M}\\cup\\mathbb{C}_{j}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-complex vectors cannot allow phase retrieval in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>M</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0330.png\" /> <jats:tex-math>{\\mathbb{H}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We are devoted to conjugate phase retrieval of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>i</m:mi> <m:mi>M</m:mi> </m:msubsup> <m:mo>∪</m:mo> <m:msubsup> <m:mi>ℂ</m:mi> <m:mi>j</m:mi> <m:mi>M</m:mi> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0322.png\" /> <jats:tex-math>{\\mathbb{C}_{i}^{M}\\cup\\mathbb{C}_{j}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-complex vectors in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>M</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0389_eq_0330.png\" /> <jats:tex-math>{\\mathbb{H}^{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where “conjugate” is not the traditional conjugate. We introduce the notions of conjugation, maximal commutative subset and conjugate phase retrieval. Using the phase lifting techniques, we present some sufficient conditions on complex vectors allowing conjugate phase retrieval. And some examples are also provided to illustrate the generality of our theory.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0389","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quaternion algebra ℍ{\mathbb{H}} is a noncommutative associative algebra. In recent years, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses conjugate phase retrieval problem in the quaternion Euclidean space ℍM{\mathbb{H}^{M}} with M≥2{M\geq 2}. Write ℂη={ξ:ξ=ξ0+βη,ξ0,β∈ℝ}{\mathbb{C}_{\eta}=\{\xi:\xi=\xi_{0}+\beta\eta,\,\xi_{0},\,\beta\in\mathbb{R}\}} for η∈{i,j,k}{\eta\in\{i,\,j,\,k\}}. We remark that not only ℂηM{\mathbb{C}_{\eta}^{M}}-vectors cannot allow traditional conjugate phase retrieval in ℍM{\mathbb{H}^{M}}, but also ℂiM∪ℂjM{\mathbb{C}_{i}^{M}\cup\mathbb{C}_{j}^{M}}-complex vectors cannot allow phase retrieval in ℍM{\mathbb{H}^{M}}. We are devoted to conjugate phase retrieval of ℂiM∪ℂjM{\mathbb{C}_{i}^{M}\cup\mathbb{C}_{j}^{M}}-complex vectors in ℍM{\mathbb{H}^{M}}, where “conjugate” is not the traditional conjugate. We introduce the notions of conjugation, maximal commutative subset and conjugate phase retrieval. Using the phase lifting techniques, we present some sufficient conditions on complex vectors allowing conjugate phase retrieval. And some examples are also provided to illustrate the generality of our theory.
四元代数ℍ {\mathbb{H}} 是一种非交换关联代数。近年来,四元数傅里叶分析法因其在信号分析和图像处理中的应用而受到越来越多的关注。本文讨论的是四元欧几里得空间ℍ M {\mathbb{H}^{M}} 中的共轭相位检索问题,其中 M ≥ 2 {M\geq 2} 。写 ℂ η = { ξ : ξ = ξ 0 + β η , ξ 0 , β ∈ ℝ }. {\mathbb{C}_{\eta}=\{xi:\xi=\xi_{0}+\beta\eta,\,\xi_{0},\,\beta\in\mathbb{R}\}} for η ∈ { i , j , k } {\eta\in\{i,\,j,\,k\}} .我们注意到不仅 η M {\mathbb{C}_{\eta}^{M}}. -向量无法在ℍ M {\mathbb{H}^{M}} 中进行传统的共轭相位检索,而且ℍ M {\mathbb{H}^{M}} 也无法进行传统的共轭相位检索。 而且 ℂ i M ∪ ℂ j M {\mathbb{C}_{i}^{M}\cup\mathbb{C}_{j}^{M}} -复数向量也不能在 ℂ M {mathbb{H}^{M}} 中进行传统的共轭相位检索。 -复数向量无法在ℍ M {\mathbb{H}^{M}} 中进行相位检索。 .我们致力于 ℂ i M ∪ ℂ j M {\mathbb{C}_{i}^{M}\cup\mathbb{C}_{j}^{M}} 的共轭相位检索。 -ℍ M {\mathbb{H}^{M}} 中的复数向量。 这里的 "共轭 "并非传统意义上的共轭。我们介绍了共轭、最大交换子集和共轭相位检索等概念。利用相位提升技术,我们提出了一些允许共轭相位检索的复杂向量的充分条件。我们还提供了一些例子来说明我们理论的普遍性。
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.