{"title":"Random permutation-based mixed-double scrambling technique for encrypting MQIR image","authors":"Hai-hua Zhu, Zi-gang Chen, Tao Leng","doi":"10.1063/5.0177920","DOIUrl":null,"url":null,"abstract":"The dual-scrambling scheme that combines position transformation and bit-plane transformation is a popular image encryption scheme. However, such schemes need more key information, and the encryption and decryption processes are complicated. In addition, the existing quantum image dual-scrambling schemes mainly deal with square images. In this paper, we propose a hybrid scrambling encryption scheme for multi-mode quantum image representation (MQIR) images based on random permutation, in which the H×W quantum image is represented in MQIR. A random number generator factor s uniquely associates one of the random permutations of integers from 1 to a positive integer, so as to hybrid scramble both the pixel position and the binarized position of each pixel value. Meanwhile, the quantum circuits and some examples of scrambling are given. Furthermore, various analyses of the performance of this scheme were conducted, including effectiveness, key space, and computational complexity. By modifying the random generation factor to construct multiple binary grayscale images, the simulated results on the IBM Quantum Cloud platform demonstrate that the proposed quantum image encryption scheme is effective. In comparison to existing quantum image dual scrambling schemes, it is both simple and effective, offering a large key space, lower computational complexity, and applicability to non-square quantum images.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"13 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0177920","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The dual-scrambling scheme that combines position transformation and bit-plane transformation is a popular image encryption scheme. However, such schemes need more key information, and the encryption and decryption processes are complicated. In addition, the existing quantum image dual-scrambling schemes mainly deal with square images. In this paper, we propose a hybrid scrambling encryption scheme for multi-mode quantum image representation (MQIR) images based on random permutation, in which the H×W quantum image is represented in MQIR. A random number generator factor s uniquely associates one of the random permutations of integers from 1 to a positive integer, so as to hybrid scramble both the pixel position and the binarized position of each pixel value. Meanwhile, the quantum circuits and some examples of scrambling are given. Furthermore, various analyses of the performance of this scheme were conducted, including effectiveness, key space, and computational complexity. By modifying the random generation factor to construct multiple binary grayscale images, the simulated results on the IBM Quantum Cloud platform demonstrate that the proposed quantum image encryption scheme is effective. In comparison to existing quantum image dual scrambling schemes, it is both simple and effective, offering a large key space, lower computational complexity, and applicability to non-square quantum images.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces