Plasma density distribution and its perturbation by probes in axially symmetrical plasma

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Applied Physics Pub Date : 2024-01-05 DOI:10.1063/5.0180185
Valery Godyak, Natalia Sternberg
{"title":"Plasma density distribution and its perturbation by probes in axially symmetrical plasma","authors":"Valery Godyak, Natalia Sternberg","doi":"10.1063/5.0180185","DOIUrl":null,"url":null,"abstract":"An analysis of plasma density distributions at arbitrary ion–atom collisionality for one-dimensional axially symmetrical cylindrical and annular plasmas is presented. Perturbations of plasma densities caused by a cylindrical probe are studied for arbitrary ion–atom collisionality. Analytical expressions for the plasma characteristics near the probe for low collisionality have been obtained. The plasma was modeled by the hydrodynamic neutral plasma equations, taking into account ionization, ion inertia, and a non-linear ion frictional force, which dominates the plasma transport at low gas pressures. Significant plasma density depletion around the probe has been observed for a wide range of ion–atom collisionality. The presented results predict underestimation of plasma density obtained from the classical Langmuir probe procedure and should provide a better understanding of electrostatic, magnetic, and microwave probes inserted into plasmas at low gas pressure.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"212 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0180185","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An analysis of plasma density distributions at arbitrary ion–atom collisionality for one-dimensional axially symmetrical cylindrical and annular plasmas is presented. Perturbations of plasma densities caused by a cylindrical probe are studied for arbitrary ion–atom collisionality. Analytical expressions for the plasma characteristics near the probe for low collisionality have been obtained. The plasma was modeled by the hydrodynamic neutral plasma equations, taking into account ionization, ion inertia, and a non-linear ion frictional force, which dominates the plasma transport at low gas pressures. Significant plasma density depletion around the probe has been observed for a wide range of ion–atom collisionality. The presented results predict underestimation of plasma density obtained from the classical Langmuir probe procedure and should provide a better understanding of electrostatic, magnetic, and microwave probes inserted into plasmas at low gas pressure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体密度分布及其在轴对称等离子体中的探测扰动
本文分析了一维轴对称圆柱形和环形等离子体在任意离子-原子碰撞度下的等离子体密度分布。研究了任意离子原子碰撞度下圆柱探针对等离子体密度的扰动。获得了低碰撞度时探针附近等离子体特性的分析表达式。等离子体是通过流体力学中性等离子体方程建模的,其中考虑了电离、离子惯性和非线性离子摩擦力(在低气体压力下主导等离子体传输)。在广泛的离子-原子碰撞度范围内,探针周围观察到了明显的等离子体密度损耗。所提供的结果预测了根据经典的朗缪尔探针程序得到的等离子体密度的低估,应该能让人们更好地理解在低气压下插入等离子体的静电、磁性和微波探针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
期刊最新文献
Dry needling and upper cervical spinal manipulation in patients with temporomandibular disorder: A multi-center randomized clinical trial. Fast inverse design of microwave and infrared Bi-stealth metamaterials based on equivalent circuit model Calibration of Jones–Wilkins–Lee equation of state for unreacted explosives with shock Hugoniot relationship and optimization algorithm Impulse coupling enhancement of aluminum targets under laser irradiation in a soft polymer confined geometry Optimal demodulation domain for microwave SQUID multiplexers in presence of readout system noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1