G. Bareille, M. Vignon, A. Chappaz, A. Fontaine, H. Tabouret, F. Morat, J. Martin, J.C. Aymes, F. Daverat, C. Pécheyran, O. Donard
{"title":"Freshwater fish otoliths record signals from both water and physiological processes: new insights from Sr/Ca and Ba/Ca ratios","authors":"G. Bareille, M. Vignon, A. Chappaz, A. Fontaine, H. Tabouret, F. Morat, J. Martin, J.C. Aymes, F. Daverat, C. Pécheyran, O. Donard","doi":"10.1139/cjfas-2022-0030","DOIUrl":null,"url":null,"abstract":"Canadian Journal of Fisheries and Aquatic Sciences, Ahead of Print. <br/> Using strontium (Sr) and barium (Ba) in otoliths to determine natal origins and understand patterns of fish movements is based on the fundamental assumption that otoliths record water chemistry signals without any major alterations. Although prior studies highlighted that fish physiology can modify the water signal in otoliths, studies for freshwater fish are scarce. We exposed different groups of Atlantic salmon parr Salmo salar to different scenarios of ambient-level variations in Sr/Ca and Ba/Ca ratios and then combined otolith chemical profiles with environmental data (water chemistry and temperature), Fulton's index, and otolith growth rates to assess what factors explain/influence the elemental ratios of Sr and Ba in otoliths. Generalized additive mixed models (GAMMs) using water-based otolith composition, temperature, Fulton's index, and “individual” as explanatory variables allow to demonstrate that water chemistry alone cannot fully explain measured ratios in otoliths, except in scenarios involving significant changes in water chemistry. Other factors (physiological effects) should be accounted for reproducing short and minimal seasonal variations in water composition, considering that inter-individual variability contributes quite significantly in most scenarios.","PeriodicalId":9515,"journal":{"name":"Canadian Journal of Fisheries and Aquatic Sciences","volume":"212 4 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Fisheries and Aquatic Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfas-2022-0030","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Canadian Journal of Fisheries and Aquatic Sciences, Ahead of Print. Using strontium (Sr) and barium (Ba) in otoliths to determine natal origins and understand patterns of fish movements is based on the fundamental assumption that otoliths record water chemistry signals without any major alterations. Although prior studies highlighted that fish physiology can modify the water signal in otoliths, studies for freshwater fish are scarce. We exposed different groups of Atlantic salmon parr Salmo salar to different scenarios of ambient-level variations in Sr/Ca and Ba/Ca ratios and then combined otolith chemical profiles with environmental data (water chemistry and temperature), Fulton's index, and otolith growth rates to assess what factors explain/influence the elemental ratios of Sr and Ba in otoliths. Generalized additive mixed models (GAMMs) using water-based otolith composition, temperature, Fulton's index, and “individual” as explanatory variables allow to demonstrate that water chemistry alone cannot fully explain measured ratios in otoliths, except in scenarios involving significant changes in water chemistry. Other factors (physiological effects) should be accounted for reproducing short and minimal seasonal variations in water composition, considering that inter-individual variability contributes quite significantly in most scenarios.
期刊介绍:
The Canadian Journal of Fisheries and Aquatic Sciences is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on -omics, cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science.