Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate.

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-01-08 DOI:10.1007/s00253-023-12907-4
Elisabeth Tamayo, Basant Nada, Isabell Hafermann, J Philipp Benz
{"title":"Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate.","authors":"Elisabeth Tamayo, Basant Nada, Isabell Hafermann, J Philipp Benz","doi":"10.1007/s00253-023-12907-4","DOIUrl":null,"url":null,"abstract":"<p><p>Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10774165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-023-12907-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将糖转运体的表达与活性相关联,以确定一种无主糖底物的转运体。
丝状真菌(如十字花科神经孢子属)能够吸收和代谢重要的糖类,例如农业和人类食物垃圾中的糖类。然而,迄今为止,丝状真菌中只有一小部分假定的糖转运体被鉴定出来,许多糖底物的相应转运体尚不清楚。在 N. crassa 中,42 个假定的主要促进剂超家族(MFS)型糖转运体中,迄今只有 14 个得到表征。因此,要发掘这一隐藏的生物技术潜力,就必须找到新的策略。通过将不同诱导条件下相关糖类的吸收曲线与 N. crassa 中编码预测糖类转运体的全部 44 个基因的表达曲线相关联,并利用已表征的真菌糖类转运体序列进行详尽的系统发育分析,我们旨在确定测试糖类的候选转运体。通过这种方法,我们发现许多糖类(如半乳糖醛酸和阿拉伯糖)的吸收率与专用转运体的表达强度高度相关,而由多个转运体转运的糖类由于功能冗余,相关性较弱。不过,这种组合方法使我们得以阐明乳糖(一种乳制品工业的副产品)的摄取系统,该系统由两个主要的细胞糊精转运体 CDT-1 和 CDT-2 组成,相关转运体 NCU00809 也有少量参与。此外,还发现了一种参与甘油转运的非 MFS 转运体。因此,通过吸收动力学与转运体表达和系统发育信息的相关性,对糖转运体进行去形态化或鉴定孤糖底物的转运体,可以为丝状真菌优化食品工业副产品和农业废弃物的再利用提供一种方法,从而创造经济价值并减少对环境的影响。要点:- 十字花科黑孢子属(Neurospora crassa)基因组包含 30 个未定性的推测糖转运体基因。- 转运体表达与糖摄取曲线的相关性有助于识别无主糖底物的转运体。- CDT-1、CDT-2 和 NCU00809 是十字花科黑僵菌转运乳制品副产品乳糖的关键基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Development of fluorescence-linked immunosorbent assay for rapid detection of Staphylococcus aureus. Novel reaction systems for catalytic synthesis of structured phospholipids. Motility of Acinetobacter baumannii: regulatory systems and controlling strategies Co-metabolic degradation and metabolite detection of hexabromocyclododecane by Shewanella oneidensis MR-1 Chitosan-based matrix as a carrier for bacteriophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1