Annu Rani, Süleyman Ergün, Srikanth Karnati, Hem Chandra Jha
{"title":"Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis.","authors":"Annu Rani, Süleyman Ergün, Srikanth Karnati, Hem Chandra Jha","doi":"10.1007/s13365-023-01190-8","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and \"Trojan horse\" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP<sub>139-151</sub>, MOG<sub>35-55</sub>, and MBP<sub>87-99</sub>) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.</p>","PeriodicalId":16665,"journal":{"name":"Journal of NeuroVirology","volume":" ","pages":"22-38"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroVirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13365-023-01190-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
期刊介绍:
The Journal of NeuroVirology (JNV) provides a unique platform for the publication of high-quality basic science and clinical studies on the molecular biology and pathogenesis of viral infections of the nervous system, and for reporting on the development of novel therapeutic strategies using neurotropic viral vectors. The Journal also emphasizes publication of non-viral infections that affect the central nervous system. The Journal publishes original research articles, reviews, case reports, coverage of various scientific meetings, along with supplements and special issues on selected subjects.
The Journal is currently accepting submissions of original work from the following basic and clinical research areas: Aging & Neurodegeneration, Apoptosis, CNS Signal Transduction, Emerging CNS Infections, Molecular Virology, Neural-Immune Interaction, Novel Diagnostics, Novel Therapeutics, Stem Cell Biology, Transmissable Encephalopathies/Prion, Vaccine Development, Viral Genomics, Viral Neurooncology, Viral Neurochemistry, Viral Neuroimmunology, Viral Neuropharmacology.