Eirini Papadimitriou, Eleftherios Chatzellis, Anastasia Dimitriadi, Gregory A Kaltsas, Stamatios Theocharis, Krystallenia I Alexandraki
{"title":"Prognostic Biomarkers in Pituitary Tumours: A Systematic Review.","authors":"Eirini Papadimitriou, Eleftherios Chatzellis, Anastasia Dimitriadi, Gregory A Kaltsas, Stamatios Theocharis, Krystallenia I Alexandraki","doi":"10.17925/EE.2023.19.2.12","DOIUrl":null,"url":null,"abstract":"<p><p>Pituitary tumours (PTs) are the second most common intracranial tumour. Although the majority show benign behaviour, they may exert aggressive behaviour and can be resistant to treatment. The aim of this review is to report the recently identified biomarkers that might have possible prognostic value. Studies evaluating potentially prognostic biomarkers or a therapeutic target in invasive/recurrent PTs compared with either non-invasive or non-recurrent PTs or normal pituitaries are included in this review. In the 28 included studies, more than 911 PTs were evaluated. A systematic search identified the expression of a number of biomarkers that may be positively correlated with disease recurrence or invasion in PT, grouped according to role: (1) insensitivity to anti-growth signals: minichromosome maintenance protein 7; (2) evasion of the immune system: cyclooxygenase 2, arginase 1, programmed cell death protein 1 (PD-1)/programmed death ligand 2, cluster of differentiation (CD) 80/CD86; (3) sustained angiogenesis: endothelial cell-specific molecule, fibroblast growth factor receptor, matrix metalloproteinase 9, pituitary tumour transforming gene; (4) self-sufficiency in growth signals: epidermal growth factor receptor; and (5) tissue invasion: matrix metalloproteinase 9, fascin protein. Biomarkers with a negative correlation with disease recurrence or invasion include: (1) insensitivity to anti-growth signals: transforming growth factor β1, Smad proteins; (2) sustained angiogenesis: tissue inhibitor of metalloproteinase 1; (3) tissue invasion: Wnt inhibitory factor 1; and (4) miscellaneous: co-expression of glial fibrillary acidic protein and cytokeratin, and oestrogen receptors α36 and α66. PD-1/programmed cell death ligand 1 showed no clear association with invasion or recurrence, while cyclin A, cytotoxic T lymphocyte-associated protein 4, S100 protein, ephrin receptor, galectin-3 , neural cell adhesion molecule, protein tyrosine phosphatase 4A3 and steroidogenic factor 1 had no association with invasion or recurrence of PT. With the aim to develop a more personalized approach to the treatment of PT, and because of the limited number of molecular targets currently studied in the context of recurrent PT and invasion, a better understanding of the most relevant of these biomarkers by well-d esigned interventional studies will lead to a better understanding of the molecular profile of PT. This should also meet the increased need of treatable molecular targets.</p>","PeriodicalId":75231,"journal":{"name":"TouchREVIEWS in endocrinology","volume":"19 2","pages":"42-53"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TouchREVIEWS in endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17925/EE.2023.19.2.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pituitary tumours (PTs) are the second most common intracranial tumour. Although the majority show benign behaviour, they may exert aggressive behaviour and can be resistant to treatment. The aim of this review is to report the recently identified biomarkers that might have possible prognostic value. Studies evaluating potentially prognostic biomarkers or a therapeutic target in invasive/recurrent PTs compared with either non-invasive or non-recurrent PTs or normal pituitaries are included in this review. In the 28 included studies, more than 911 PTs were evaluated. A systematic search identified the expression of a number of biomarkers that may be positively correlated with disease recurrence or invasion in PT, grouped according to role: (1) insensitivity to anti-growth signals: minichromosome maintenance protein 7; (2) evasion of the immune system: cyclooxygenase 2, arginase 1, programmed cell death protein 1 (PD-1)/programmed death ligand 2, cluster of differentiation (CD) 80/CD86; (3) sustained angiogenesis: endothelial cell-specific molecule, fibroblast growth factor receptor, matrix metalloproteinase 9, pituitary tumour transforming gene; (4) self-sufficiency in growth signals: epidermal growth factor receptor; and (5) tissue invasion: matrix metalloproteinase 9, fascin protein. Biomarkers with a negative correlation with disease recurrence or invasion include: (1) insensitivity to anti-growth signals: transforming growth factor β1, Smad proteins; (2) sustained angiogenesis: tissue inhibitor of metalloproteinase 1; (3) tissue invasion: Wnt inhibitory factor 1; and (4) miscellaneous: co-expression of glial fibrillary acidic protein and cytokeratin, and oestrogen receptors α36 and α66. PD-1/programmed cell death ligand 1 showed no clear association with invasion or recurrence, while cyclin A, cytotoxic T lymphocyte-associated protein 4, S100 protein, ephrin receptor, galectin-3 , neural cell adhesion molecule, protein tyrosine phosphatase 4A3 and steroidogenic factor 1 had no association with invasion or recurrence of PT. With the aim to develop a more personalized approach to the treatment of PT, and because of the limited number of molecular targets currently studied in the context of recurrent PT and invasion, a better understanding of the most relevant of these biomarkers by well-d esigned interventional studies will lead to a better understanding of the molecular profile of PT. This should also meet the increased need of treatable molecular targets.