Delay-independent control for synchronization of memristor-based BAM neural networks with parameter perturbation and strong mismatch via finite-time technology
{"title":"Delay-independent control for synchronization of memristor-based BAM neural networks with parameter perturbation and strong mismatch via finite-time technology","authors":"Lili Zhou, Huiying Zhang, Fei Tan, Kaiyue Liu","doi":"10.1177/01423312231200514","DOIUrl":null,"url":null,"abstract":"This paper mainly studies the synchronization problem of memristor-based bidirectional associative memory neural networks (MBAMNNs) via finite-time technology. Different from the existing neural network dynamic models, the given model in this paper is focused on the impact of parameter perturbation and strong mismatch, where strong mismatch includes parameter mismatch and time-varying delay mismatch. These characteristics can make the model be closer to the actual situation. A delay-independent feedback control scheme, which can stabilize the error system within finite-time regardless of whether the past state is known or not, is designed. It is worth noting that the constant is replaced by a function with the exponential term in the delay-independent controller, which can save the control cost to a certain extent. Based on the integral inequality technique, some sufficient conditions for MBAMNNs to converge to the equilibrium point within finite-time are provided. The validity and correctness of the theoretical results are finally confirmed by numerical simulation.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"8 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312231200514","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper mainly studies the synchronization problem of memristor-based bidirectional associative memory neural networks (MBAMNNs) via finite-time technology. Different from the existing neural network dynamic models, the given model in this paper is focused on the impact of parameter perturbation and strong mismatch, where strong mismatch includes parameter mismatch and time-varying delay mismatch. These characteristics can make the model be closer to the actual situation. A delay-independent feedback control scheme, which can stabilize the error system within finite-time regardless of whether the past state is known or not, is designed. It is worth noting that the constant is replaced by a function with the exponential term in the delay-independent controller, which can save the control cost to a certain extent. Based on the integral inequality technique, some sufficient conditions for MBAMNNs to converge to the equilibrium point within finite-time are provided. The validity and correctness of the theoretical results are finally confirmed by numerical simulation.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.