Fundamental Study of Press Molding Method for CFRP Preform Using a 3D Printer

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS International Journal of Automation Technology Pub Date : 2024-01-05 DOI:10.20965/ijat.2024.p0128
Hidetake Tanaka, Yuuki Nishimura, Tatsuki Ikari, Emir Yilmaz
{"title":"Fundamental Study of Press Molding Method for CFRP Preform Using a 3D Printer","authors":"Hidetake Tanaka, Yuuki Nishimura, Tatsuki Ikari, Emir Yilmaz","doi":"10.20965/ijat.2024.p0128","DOIUrl":null,"url":null,"abstract":"Carbon fiber reinforced plastic (CFRP) is a composite material with high specific strength and is applied to transportation and aviation equipment. However, conventional processing methods require large-scale production apparatus or a high level of dexterity that only comes with extensive experience which makes it difficult to achieve high processing efficiency. The objective of this study is to develop a novel method for forming thermos-plastic CFRP (CFRTP) preforms implementing a 3D printer for press molding. Applying this method offers the advantage that continuous carbon fibers can be formed on a free-form surface. It also reduces the manufacturing time and operator skill required. The goal of this research is to establish a method for molding a free-form surface composed of continuous fibers by employing a 3D-printed preform designed to match the unfolded polygonised diagram of the free-form surface. Previous research introduced an unfolding approach for converting a three-dimensional shape to a plane surface based on a computer-aided design and manufacturing (CAD/CAM) system, enabling the generation of an unfolding diagram that maintains the continuity of fiber tow. Furthermore, the validity of unfolded diagram was confirmed by reproducing the objective three-dimensional shape from the unfolded diagram using thermos-setting CPRP (CFRTS) tow prepreg. In this study, the viability of the proposed molding process using CFRTP preform fabricated by a 3D printer was verified and an assessment of the formability of the molded parts was conducted.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon fiber reinforced plastic (CFRP) is a composite material with high specific strength and is applied to transportation and aviation equipment. However, conventional processing methods require large-scale production apparatus or a high level of dexterity that only comes with extensive experience which makes it difficult to achieve high processing efficiency. The objective of this study is to develop a novel method for forming thermos-plastic CFRP (CFRTP) preforms implementing a 3D printer for press molding. Applying this method offers the advantage that continuous carbon fibers can be formed on a free-form surface. It also reduces the manufacturing time and operator skill required. The goal of this research is to establish a method for molding a free-form surface composed of continuous fibers by employing a 3D-printed preform designed to match the unfolded polygonised diagram of the free-form surface. Previous research introduced an unfolding approach for converting a three-dimensional shape to a plane surface based on a computer-aided design and manufacturing (CAD/CAM) system, enabling the generation of an unfolding diagram that maintains the continuity of fiber tow. Furthermore, the validity of unfolded diagram was confirmed by reproducing the objective three-dimensional shape from the unfolded diagram using thermos-setting CPRP (CFRTS) tow prepreg. In this study, the viability of the proposed molding process using CFRTP preform fabricated by a 3D printer was verified and an assessment of the formability of the molded parts was conducted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用三维打印机对 CFRP 预型件进行压制成型方法的基础研究
碳纤维增强塑料(CFRP)是一种复合材料,具有很高的比强度,被广泛应用于交通和航空设备。然而,传统的加工方法需要大规模的生产设备,或者需要凭借丰富的经验才能掌握的高超技艺,因此很难实现高效加工。本研究的目的是开发一种新型热塑 CFRP(CFRTP)预型件成型方法,使用三维打印机进行压制成型。采用这种方法的优点是可以在自由形态表面上形成连续的碳纤维。它还能缩短制造时间,降低对操作员技能的要求。本研究的目标是建立一种由连续纤维组成的自由形态表面的成型方法,方法是采用三维打印预型件,其设计与自由形态表面的展开多边形图相匹配。之前的研究基于计算机辅助设计和制造(CAD/CAM)系统,引入了一种将三维形状转换为平面的展开方法,从而能够生成保持纤维束连续性的展开图。此外,通过使用热固性 CPRP(CFRTS)丝束预浸料再现展开图中的客观三维形状,证实了展开图的有效性。在这项研究中,使用 3D 打印机制造的 CFRTP 预成型件验证了所建议的成型工艺的可行性,并对成型件的可成形性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
期刊最新文献
Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System Effect of Different Feed Rates on Chip Evacuation in Drilling of Lead-Free Brass with a Small-Diameter Drill Special Issue on Recent Advanced Manufacturing Science and Technology Initial Wear of Fixed Diamond Wire Tool –Effect of Slurry Assisted Slicing on Machining Mechanism— Tool Path Design of Metal Powder Extrusion in Additive Manufacturing for Suppressing Shape Error Caused During Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1