{"title":"Fundamental Study of Press Molding Method for CFRP Preform Using a 3D Printer","authors":"Hidetake Tanaka, Yuuki Nishimura, Tatsuki Ikari, Emir Yilmaz","doi":"10.20965/ijat.2024.p0128","DOIUrl":null,"url":null,"abstract":"Carbon fiber reinforced plastic (CFRP) is a composite material with high specific strength and is applied to transportation and aviation equipment. However, conventional processing methods require large-scale production apparatus or a high level of dexterity that only comes with extensive experience which makes it difficult to achieve high processing efficiency. The objective of this study is to develop a novel method for forming thermos-plastic CFRP (CFRTP) preforms implementing a 3D printer for press molding. Applying this method offers the advantage that continuous carbon fibers can be formed on a free-form surface. It also reduces the manufacturing time and operator skill required. The goal of this research is to establish a method for molding a free-form surface composed of continuous fibers by employing a 3D-printed preform designed to match the unfolded polygonised diagram of the free-form surface. Previous research introduced an unfolding approach for converting a three-dimensional shape to a plane surface based on a computer-aided design and manufacturing (CAD/CAM) system, enabling the generation of an unfolding diagram that maintains the continuity of fiber tow. Furthermore, the validity of unfolded diagram was confirmed by reproducing the objective three-dimensional shape from the unfolded diagram using thermos-setting CPRP (CFRTS) tow prepreg. In this study, the viability of the proposed molding process using CFRTP preform fabricated by a 3D printer was verified and an assessment of the formability of the molded parts was conducted.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber reinforced plastic (CFRP) is a composite material with high specific strength and is applied to transportation and aviation equipment. However, conventional processing methods require large-scale production apparatus or a high level of dexterity that only comes with extensive experience which makes it difficult to achieve high processing efficiency. The objective of this study is to develop a novel method for forming thermos-plastic CFRP (CFRTP) preforms implementing a 3D printer for press molding. Applying this method offers the advantage that continuous carbon fibers can be formed on a free-form surface. It also reduces the manufacturing time and operator skill required. The goal of this research is to establish a method for molding a free-form surface composed of continuous fibers by employing a 3D-printed preform designed to match the unfolded polygonised diagram of the free-form surface. Previous research introduced an unfolding approach for converting a three-dimensional shape to a plane surface based on a computer-aided design and manufacturing (CAD/CAM) system, enabling the generation of an unfolding diagram that maintains the continuity of fiber tow. Furthermore, the validity of unfolded diagram was confirmed by reproducing the objective three-dimensional shape from the unfolded diagram using thermos-setting CPRP (CFRTS) tow prepreg. In this study, the viability of the proposed molding process using CFRTP preform fabricated by a 3D printer was verified and an assessment of the formability of the molded parts was conducted.