Demystifying AI: Navigating the Balance between Precision and Comprehensibility with Explainable Artificial Intelligence

Narayana Challa
{"title":"Demystifying AI: Navigating the Balance between Precision and Comprehensibility with Explainable Artificial Intelligence","authors":"Narayana Challa","doi":"10.47941/ijce.1603","DOIUrl":null,"url":null,"abstract":"Integrating Artificial Intelligence (AI) into daily life has brought transformative changes, ranging from personalized recommendations on streaming platforms to advancements in medical diagnostics. However, concerns about the transparency and interpretability of AI models, intense neural networks, have become prominent. This paper explores the emerging paradigm of Explainable Artificial Intelligence (XAI) as a crucial response to address these concerns. Delving into the multifaceted challenges posed by AI complexity, the study emphasizes the critical significance of interpretability. It examines how XAI is fundamentally reshaping the landscape of artificial intelligence, seeking to reconcile precision with the transparency necessary for widespread acceptance.","PeriodicalId":198033,"journal":{"name":"International Journal of Computing and Engineering","volume":"119 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47941/ijce.1603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating Artificial Intelligence (AI) into daily life has brought transformative changes, ranging from personalized recommendations on streaming platforms to advancements in medical diagnostics. However, concerns about the transparency and interpretability of AI models, intense neural networks, have become prominent. This paper explores the emerging paradigm of Explainable Artificial Intelligence (XAI) as a crucial response to address these concerns. Delving into the multifaceted challenges posed by AI complexity, the study emphasizes the critical significance of interpretability. It examines how XAI is fundamentally reshaping the landscape of artificial intelligence, seeking to reconcile precision with the transparency necessary for widespread acceptance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭开人工智能的神秘面纱:利用可解释的人工智能在精确性和可理解性之间取得平衡
将人工智能(AI)融入日常生活带来了变革,从流媒体平台上的个性化推荐到医疗诊断的进步,不一而足。然而,人们对人工智能模型(包括神经网络)的透明度和可解释性的担忧已变得十分突出。本文探讨了可解释人工智能(XAI)这一新兴范式,作为解决这些问题的重要对策。研究深入探讨了人工智能复杂性带来的多方面挑战,强调了可解释性的重要意义。研究探讨了 XAI 如何从根本上重塑人工智能的格局,如何在精确性与广泛接受所需的透明度之间寻求协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clouding the Future: Innovating Towards Net-Zero Emissions Adaptive Chatbots: Real-Time Sentiment Analysis for Customer Support Fast and Efficient UserID Lookup in Distributed Authentication: A Probabilistic Approach Using Bloom Filters Comprehensive Guide to AI Regulations: Analyzing the EU AI Act and Global Initiatives Software-Defined Networking (SDN) for Efficient Network Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1