{"title":"Fight against hair loss together: exploring self-disclosure and social support in an online hair loss support community","authors":"Zizhong Zhang","doi":"10.1108/oir-07-2023-0346","DOIUrl":null,"url":null,"abstract":"Purpose Hair loss is often overlooked but psychologically challenging. However, the emergence of online health communities provides opportunities for hair loss patients to seek social support through self-disclosure. Nevertheless, not all disclosures receive the desired support. This research explores what patients disclose within the community and how their health narrative (content, form and linguistic style) regarding self-disclosure influences the social support they receive.Design/methodology/approachThis study investigated a 13-year-old online support group for Chinese hair loss patients with nearly 240,000 members. Using structural topic modeling, Linguistic Inquiry and Word Count, and a negative binomial model, the research analyzed the content of self-disclosure and the interrelationships between social support and three narrative dimensions of self-disclosure.FindingsSelf-disclosures are classified into 14 topics, grouped under analytical, informative and emotional categories. Emotion-related self-disclosures, whether in content or effective word use, receive deeper social support. Longer and image-rich posts attract more support in quantity, but not necessarily in quality, while cognitive words have a limited impact.Originality/valueThis study addresses the previously overlooked population of hair loss patients within online health communities. It employs a more comprehensive health narrative framework to explore the relationship between self-disclosure and social support, utilizing unsupervised structural topic modeling methods to mine text. The research offers practical implications for how patients seek support and for healthcare professionals in developing doctor-patient communication strategies.","PeriodicalId":503252,"journal":{"name":"Online Information Review","volume":"13 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Information Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/oir-07-2023-0346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose Hair loss is often overlooked but psychologically challenging. However, the emergence of online health communities provides opportunities for hair loss patients to seek social support through self-disclosure. Nevertheless, not all disclosures receive the desired support. This research explores what patients disclose within the community and how their health narrative (content, form and linguistic style) regarding self-disclosure influences the social support they receive.Design/methodology/approachThis study investigated a 13-year-old online support group for Chinese hair loss patients with nearly 240,000 members. Using structural topic modeling, Linguistic Inquiry and Word Count, and a negative binomial model, the research analyzed the content of self-disclosure and the interrelationships between social support and three narrative dimensions of self-disclosure.FindingsSelf-disclosures are classified into 14 topics, grouped under analytical, informative and emotional categories. Emotion-related self-disclosures, whether in content or effective word use, receive deeper social support. Longer and image-rich posts attract more support in quantity, but not necessarily in quality, while cognitive words have a limited impact.Originality/valueThis study addresses the previously overlooked population of hair loss patients within online health communities. It employs a more comprehensive health narrative framework to explore the relationship between self-disclosure and social support, utilizing unsupervised structural topic modeling methods to mine text. The research offers practical implications for how patients seek support and for healthcare professionals in developing doctor-patient communication strategies.