Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results

G. Trencsényi, Csaba Csikos, Z. Képes
{"title":"Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results","authors":"G. Trencsényi, Csaba Csikos, Z. Képes","doi":"10.3390/ijms25010664","DOIUrl":null,"url":null,"abstract":"Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes—Radium-223 and Radium-224 (223/224Ra)—in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijms25010664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes—Radium-223 and Radium-224 (223/224Ra)—in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米医学时代的靶向镭α疗法:体内结果
利用具有α发射功能的放射性核素进行α粒子靶向治疗,是现代癌症治疗中发展迅速的一个领域。为了有选择性地将α发射同位素送入肿瘤,靶向载体(包括单克隆抗体、肽、小分子抑制剂或其他生物大分子)被附着在α发射同位素上,从而确保与肿瘤相关抗原和细胞表面受体特异性结合。虽然早期的研究已经证明了α发射镭(Ra)同位素--镭-223和镭-224(223/224Ra)--在治疗骨骼转移瘤方面的抗肿瘤潜力,但它们无法与靶向特异性分子复合,这阻碍了它们在骨靶向以外的应用。为了在更广泛的癌症范围内利用镭的治疗效果,纳米粒子最近被用作载体,以确保将 223/224Ra 与靶蛋白载体连接起来。以先前的研究结果为例,Ra 成功地与几种纳米/微粒结合,包括磷酸镧、纳米沸石、硫酸钡、羟基磷灰石、碳酸钙、石膏、天青石或脂质体。尽管 223/224Ra 与纳米粒子结合可延长肿瘤保留时间并提高相关的放射治疗效果,但在临床使用之前,必须对放射性标记纳米探针进行体内评估。为此,不同癌症的异种移植实验模型提供了一个非常适合的方案。在此,我们总结了掺杂223/224Ra的纳米粒子的最新成果以及α靶向放射治疗的相关进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Regulatory Landscape of Dementia: Insights from Non-Coding RNAs Longitudinal Analysis of Mitochondrial Function in a Choline-Deficient L-Amino Acid-Defined High-Fat Diet-Induced Metabolic Dysfunction-Associated Steatohepatitis Mouse Model Molecular Force Sensors for Biological Application NRF2 Plays a Crucial Role in the Tolerogenic Effect of Ethyl Pyruvate on Dendritic Cells Current Novel Targeted Therapeutic Strategies in Multiple Myeloma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1