Fast Partial Shading Detection on PV Modules for Precise Power Loss Ratio Estimation Using Digital Image Processing

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Electrical and Computer Engineering Pub Date : 2024-01-04 DOI:10.1155/2024/9385602
Eko Adhi Setiawan, Muhammad Fathurrahman, Radityo Fajar Pamungkas, Samsul Ma’arif
{"title":"Fast Partial Shading Detection on PV Modules for Precise Power Loss Ratio Estimation Using Digital Image Processing","authors":"Eko Adhi Setiawan, Muhammad Fathurrahman, Radityo Fajar Pamungkas, Samsul Ma’arif","doi":"10.1155/2024/9385602","DOIUrl":null,"url":null,"abstract":"Maintaining the maximum performance of solar panels poses the foremost challenge for solar photovoltaic power plants in this era. One of the common PV faults which decreases PV power output is a hot spot which is caused by a prolonged local partial shading from objects, such as dust piles or animal waste. To prevent it, an enormous effort for PV inspection is needed especially for large solar power plants. Hence, automatic partial shading detection is critical in preventing PV hot spots to assist maintenance activities which are associated with a drop in energy output. This research developed fast partial shading detection application on PV modules using digital image processing to detect the hot spot and PV modules areas and afterwards calculate the PV systems power loss ratio. The proposed method demonstrated a hot spot detection rate of 94.74% and a module detection rate of 100%. The power loss ratio calculation is compared and validated using IV curve measurement and has 91.26% similarity value which is a feasible application for the real-world system.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/9385602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining the maximum performance of solar panels poses the foremost challenge for solar photovoltaic power plants in this era. One of the common PV faults which decreases PV power output is a hot spot which is caused by a prolonged local partial shading from objects, such as dust piles or animal waste. To prevent it, an enormous effort for PV inspection is needed especially for large solar power plants. Hence, automatic partial shading detection is critical in preventing PV hot spots to assist maintenance activities which are associated with a drop in energy output. This research developed fast partial shading detection application on PV modules using digital image processing to detect the hot spot and PV modules areas and afterwards calculate the PV systems power loss ratio. The proposed method demonstrated a hot spot detection rate of 94.74% and a module detection rate of 100%. The power loss ratio calculation is compared and validated using IV curve measurement and has 91.26% similarity value which is a feasible application for the real-world system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数字图像处理快速检测光伏组件上的部分遮光,以实现精确的功率损耗率估算
保持太阳能电池板的最大性能是当今太阳能光伏发电站面临的首要挑战。减少光伏发电量的常见光伏故障之一是热斑,它是由灰尘堆或动物粪便等物体长期局部遮挡造成的。为了防止这种情况的发生,尤其是大型太阳能发电站,需要花费大量人力物力进行光伏检测。因此,自动局部遮阳检测对于防止光伏热点、协助维护活动至关重要,因为光伏热点会导致能量输出下降。这项研究利用数字图像处理技术开发了光伏模块快速部分遮光检测应用,以检测热点和光伏模块区域,然后计算光伏系统的功率损耗率。该方法的热点检测率为 94.74%,模块检测率为 100%。功率损耗率计算通过 IV 曲线测量进行比较和验证,相似值为 91.26%,在实际系统中的应用是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
期刊最新文献
Network Intrusion Detection Using Knapsack Optimization, Mutual Information Gain, and Machine Learning Electronically Tunable Grounded and Floating Capacitance Multipliers Using a Single Active Element A Novel Technique for Facial Recognition Based on the GSO-CNN Deep Learning Algorithm Simulation Analysis of Arc-Quenching Performance of Eco-Friendly Insulating Gas Mixture of CF3I and CO2 under Impulse Arc Balancing Data Privacy and 5G VNFs Security Monitoring: Federated Learning with CNN + BiLSTM + LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1