C. Ananna, Lucia Barbieri, Axel Boeltzig, Matteo Campostrini, Fausto Casaburo, G. F. Ciani, Alessandro Compagnucci, R. M. Gesuè, Jordan Marsh, E. Masha, Daniela Mercogliano, David Rapagnani, Duncan Robb, Ragandeep Singh Sidhu, J. Skowronski
{"title":"Recent results and future perspectives with solid targets at LUNA","authors":"C. Ananna, Lucia Barbieri, Axel Boeltzig, Matteo Campostrini, Fausto Casaburo, G. F. Ciani, Alessandro Compagnucci, R. M. Gesuè, Jordan Marsh, E. Masha, Daniela Mercogliano, David Rapagnani, Duncan Robb, Ragandeep Singh Sidhu, J. Skowronski","doi":"10.3389/fspas.2023.1325053","DOIUrl":null,"url":null,"abstract":"The stellar evolution and chemical make-up of the Universe are determined by nuclear reactions occurring in a wide variety of stellar sites. Precise determinations of the cross sections of these reactions are crucial for the calculation of reaction rates and for the development of stellar evolution models. The Laboratory for Underground Nuclear Astrophysics (LUNA) collaboration has been at the forefront of the direct measurement of nuclear reactions at the low energies of astrophysical interest for the last 35 years. The many significant results achieved at LUNA have been made possible due to the low background conditions uniquely available thanks to its location deep underground at the Laboratori Nazionali del Gran Sasso. Another key aspect of these successes is due to the experience of the LUNA collaboration in the production and characterization of a variety of solid targets used in reaction measurements. In this review, the main production techniques of solid targets are described, as well as the common methods adopted for target degradation monitoring. We also present the results of recent measurements using these targets and the future plans of the LUNA collaboration for measurements using solid targets at the LUNA400 kV and the new Ion Beam Facility (IBF) 3.5 MV are also presented.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"58 23","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1325053","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The stellar evolution and chemical make-up of the Universe are determined by nuclear reactions occurring in a wide variety of stellar sites. Precise determinations of the cross sections of these reactions are crucial for the calculation of reaction rates and for the development of stellar evolution models. The Laboratory for Underground Nuclear Astrophysics (LUNA) collaboration has been at the forefront of the direct measurement of nuclear reactions at the low energies of astrophysical interest for the last 35 years. The many significant results achieved at LUNA have been made possible due to the low background conditions uniquely available thanks to its location deep underground at the Laboratori Nazionali del Gran Sasso. Another key aspect of these successes is due to the experience of the LUNA collaboration in the production and characterization of a variety of solid targets used in reaction measurements. In this review, the main production techniques of solid targets are described, as well as the common methods adopted for target degradation monitoring. We also present the results of recent measurements using these targets and the future plans of the LUNA collaboration for measurements using solid targets at the LUNA400 kV and the new Ion Beam Facility (IBF) 3.5 MV are also presented.
恒星的演化和宇宙的化学构成是由发生在各种恒星部位的核反应决定的。精确测定这些反应的截面对于计算反应速率和建立恒星演化模型至关重要。在过去的 35 年里,地下核天体物理学实验室(LUNA)的合作一直处于直接测量天体物理学感兴趣的低能量核反应的前沿。地下核天体物理学实验室(LUNA)之所以能够取得许多重大成果,是因为它位于大萨索国家实验室(Laboratori Nazionali del Gran Sasso)的地下深处,具有得天独厚的低背景条件。这些成功的另一个关键因素是 LUNA 在生产和表征反应测量中使用的各种固体靶材方面积累了丰富的经验。在这篇综述中,我们将介绍固体靶材的主要生产技术,以及用于靶材降解监测的常用方法。我们还介绍了最近使用这些靶的测量结果,并介绍了 LUNA 合作组织未来在 LUNA400 kV 和新离子束设施 (IBF) 3.5 MV 使用固体靶进行测量的计划。