Research progress and perspectives of biogas production from municipal organic solid waste

IF 1.6 4区 工程技术 Q3 Chemical Engineering International Journal of Chemical Reactor Engineering Pub Date : 2024-01-04 DOI:10.1515/ijcre-2023-0082
Jianbo Zhao, Shan Ren, Chenghong Li, Mengjiao Jiao, Guanzhou Wu, Hongsheng Chen
{"title":"Research progress and perspectives of biogas production from municipal organic solid waste","authors":"Jianbo Zhao, Shan Ren, Chenghong Li, Mengjiao Jiao, Guanzhou Wu, Hongsheng Chen","doi":"10.1515/ijcre-2023-0082","DOIUrl":null,"url":null,"abstract":"Abstract Anaerobic digestion is a prevailing technology for the treatment and utilization of municipal organic solid waste (MOSW). In this technology, the macromolecular organic matter in waste degrades into small molecular substances through the anaerobic decomposition of microorganisms, producing biogas that can provide enormous energy. This paper focuses on the research progress of anaerobic digestion of various organic wastes for biogas production. The principle and process of anaerobic digestion for biogas production are introduced, along with the key factors affecting anaerobic digestion efficiency, such as temperature, pH, and sealing conditions. At the same time, the current cycle treatment technology and comprehensive treatment system of MOSW are also summarized. Furthermore, the paper explores biogas purification technologies, including desulfurization, deoxidation, drying, and decarbonization. Finally, the state-of-the-art of the utilization of MOSW for biogas production in the world and the problems faced by the utilization of MOSW for biogas production in China are reviewed. By summarizing the anaerobic digestion technology of MOSW, this review hopes to provide some reasonable solutions for the high-value utilization of MOSW.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"52 7","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Anaerobic digestion is a prevailing technology for the treatment and utilization of municipal organic solid waste (MOSW). In this technology, the macromolecular organic matter in waste degrades into small molecular substances through the anaerobic decomposition of microorganisms, producing biogas that can provide enormous energy. This paper focuses on the research progress of anaerobic digestion of various organic wastes for biogas production. The principle and process of anaerobic digestion for biogas production are introduced, along with the key factors affecting anaerobic digestion efficiency, such as temperature, pH, and sealing conditions. At the same time, the current cycle treatment technology and comprehensive treatment system of MOSW are also summarized. Furthermore, the paper explores biogas purification technologies, including desulfurization, deoxidation, drying, and decarbonization. Finally, the state-of-the-art of the utilization of MOSW for biogas production in the world and the problems faced by the utilization of MOSW for biogas production in China are reviewed. By summarizing the anaerobic digestion technology of MOSW, this review hopes to provide some reasonable solutions for the high-value utilization of MOSW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用城市有机固体废物生产沼气的研究进展和前景
摘要 厌氧消化是处理和利用城市有机固体废物(MOSW)的一种普遍技术。在这项技术中,废物中的大分子有机物在微生物的厌氧分解作用下降解为小分子物质,产生的沼气可提供巨大的能量。本文主要介绍各种有机废物厌氧消化生产沼气的研究进展。介绍了厌氧消化生产沼气的原理和过程,以及影响厌氧消化效率的关键因素,如温度、pH 值和密封条件等。同时,还总结了当前的循环处理技术和 MOSW 综合处理系统。此外,本文还探讨了沼气净化技术,包括脱硫、脱氧、干燥和脱碳。最后,综述了世界上利用 MOSW 生产沼气的先进技术,以及中国利用 MOSW 生产沼气所面临的问题。通过总结 MOSW 厌氧消化技术,本综述希望能为 MOSW 的高值化利用提供一些合理的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
期刊最新文献
VOCs (toluene) removal from iron ore sintering flue gas via LaBO3 (B = Cu, Fe, Cr, Mn, Co) perovskite catalysts: experiment and mechanism Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor R dot approach for kinetic modelling of WGS over noble metals Retraction of: Computational fluid dynamic simulations to improve heat transfer in shell tube heat exchangers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1