{"title":"Low-Carbon Optimal Scheduling of Integrated Energy System Considering Multiple Uncertainties and Electricity–Heat Integrated Demand Response","authors":"Hongwei Li, Xingmin Li, Siyu Chen, Shuaibing Li, Yongqiang Kang, Xiping Ma","doi":"10.3390/en17010245","DOIUrl":null,"url":null,"abstract":"To realize the low-carbon operation of integrated energy systems (IESs), this paper proposes a low-carbon optimal scheduling method. First of all, considering the integrated demand response of price-based electricity and heating, an economic scheduling model of the IES integrated demand response based on chance-constrained programming is proposed to minimize the integrated operating cost in an uncertain environment. Through the comprehensive demand response model, the impact of the demand response ratio on the operating economy of the IES is explored. Afterward, the carbon emission index is introduced, and gas turbines and energy storage devices are used as the actuators of multi-energy coupling to further explore the potential interactions between the coupling capacities of various heterogeneous energy sources and carbon emissions. Finally, the original uncertainty model is transformed into a mixed-integer linear-programming model and solved using sequence operation theory and the linearization method. The results show that the operating economy of the IES is improved by coordinating the uncertainty of the integrated demand response and renewable energy. In addition, the tradeoff between the working economy and reliability of the EIS can be balanced via the setting of an appropriate confidence level for the opportunity constraints.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010245","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To realize the low-carbon operation of integrated energy systems (IESs), this paper proposes a low-carbon optimal scheduling method. First of all, considering the integrated demand response of price-based electricity and heating, an economic scheduling model of the IES integrated demand response based on chance-constrained programming is proposed to minimize the integrated operating cost in an uncertain environment. Through the comprehensive demand response model, the impact of the demand response ratio on the operating economy of the IES is explored. Afterward, the carbon emission index is introduced, and gas turbines and energy storage devices are used as the actuators of multi-energy coupling to further explore the potential interactions between the coupling capacities of various heterogeneous energy sources and carbon emissions. Finally, the original uncertainty model is transformed into a mixed-integer linear-programming model and solved using sequence operation theory and the linearization method. The results show that the operating economy of the IES is improved by coordinating the uncertainty of the integrated demand response and renewable energy. In addition, the tradeoff between the working economy and reliability of the EIS can be balanced via the setting of an appropriate confidence level for the opportunity constraints.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.