F. Buthmann, Sophia Volpert, J. Koop, Gerhard Schembecker
{"title":"Prediction of Bleeding via Simulation of Hydrodynamics in Centrifugal Partition Chromatography","authors":"F. Buthmann, Sophia Volpert, J. Koop, Gerhard Schembecker","doi":"10.3390/separations11010016","DOIUrl":null,"url":null,"abstract":"Centrifugal Partition Chromatography (CPC) utilizes a two-phase liquid–liquid system as mobile and stationary phases. During operation, the latter continuously drains out of the rotor, despite it being in fact stationary, leading to decreasing separation efficiency over time, a phenomenon still poorly understood today because neither simulations nor extensive experimental investigations have addressed this so-called bleeding. With the model presented in this study, the underlying hydrodynamics are discussed in detail. This model can simulate bleeding over 60 s and is verified experimentally for different operating points (volumetric flow rates of 5, 12, and 20 mL⋅min−1) of the Centrifugal Partition Chromatograph utilizing an aqueous–organic phase system. We simulated two interconnected chambers at the rotor inlet and analyzed the loss of the stationary phase over time. The results of the simulated second chamber are closely aligned with the experimental validation results. Thus, the prediction of bleeding utilizing the simulation of hydrodynamics was successful. Moreover, we highlighted the benefits of the two-chamber setup modeled in this study compared to single-chamber models.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"12 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11010016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Centrifugal Partition Chromatography (CPC) utilizes a two-phase liquid–liquid system as mobile and stationary phases. During operation, the latter continuously drains out of the rotor, despite it being in fact stationary, leading to decreasing separation efficiency over time, a phenomenon still poorly understood today because neither simulations nor extensive experimental investigations have addressed this so-called bleeding. With the model presented in this study, the underlying hydrodynamics are discussed in detail. This model can simulate bleeding over 60 s and is verified experimentally for different operating points (volumetric flow rates of 5, 12, and 20 mL⋅min−1) of the Centrifugal Partition Chromatograph utilizing an aqueous–organic phase system. We simulated two interconnected chambers at the rotor inlet and analyzed the loss of the stationary phase over time. The results of the simulated second chamber are closely aligned with the experimental validation results. Thus, the prediction of bleeding utilizing the simulation of hydrodynamics was successful. Moreover, we highlighted the benefits of the two-chamber setup modeled in this study compared to single-chamber models.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization