{"title":"Estimation of HIV Prevalence among the Female Population in South India: A Bayesian Approach","authors":"Elangovan Arumugum, Vasna Joshua","doi":"10.18502/jbe.v9i2.14624","DOIUrl":null,"url":null,"abstract":"Introduction: The HIV Sentinel Surveillance (HSS) conducted by National AIDS Control Organization (NACO) is the predominant data source for HIV estimations in India. While the HSS targets the key populations at risk of HIV infection, the National Family Health Survey (NFHS) measures the community- based HIV prevalence. Improvised HIV estimates in India were attributed to the HIV prevalence data obtained from the NACO-HSS and NFHS. \nMethods: Bayesian analysis was performed to determine the state-level prevalence of HIV among females in seven South Indian States. The analysis involved plotting the prior, likelihood, and posterior distributions, facilitating a visual assessment of the data. The HIV prevalence among females calculated from the NFHS (2015-16) survey data was used for prior distributions. HIV prevalence among pregnant women obtained from the HIV Sentinel Surveillance 2019 was used for likelihood. Bayesian analysis was performed using the R programming (RStudio 2022.02.0). A posterior probability distribution was obtained using the prior distribution and the likelihood by applying the Bayes theorem. Graphical representation was achieved through R's plotting functions. Kerala and Pondicherry were not included in the analysis due to zero or very low prevalence reported in both NFHS and HSS. \nResults: The Bayesian estimates of HIV prevalence among females were 0.38 % [95% CI:0.29 - 0.47] in Andhra Pradesh, 0.28 [95% CI:0.23 - 0.35] in Karnataka, 0.27 [95% CI:0.20 - 0.34] Odisha, 0.27 % [95% CI:0.19 - 0.36] in Telangana and 0.19 [95% CI:0.15 - 0.24] in Tamil Nadu. \nConclusion: Bayesian techniques present a versatile and robust strategy for modelling and analysing HIV- related data, offering a flexible and powerful approach to data analysis.","PeriodicalId":34310,"journal":{"name":"Journal of Biostatistics and Epidemiology","volume":"84 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jbe.v9i2.14624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The HIV Sentinel Surveillance (HSS) conducted by National AIDS Control Organization (NACO) is the predominant data source for HIV estimations in India. While the HSS targets the key populations at risk of HIV infection, the National Family Health Survey (NFHS) measures the community- based HIV prevalence. Improvised HIV estimates in India were attributed to the HIV prevalence data obtained from the NACO-HSS and NFHS.
Methods: Bayesian analysis was performed to determine the state-level prevalence of HIV among females in seven South Indian States. The analysis involved plotting the prior, likelihood, and posterior distributions, facilitating a visual assessment of the data. The HIV prevalence among females calculated from the NFHS (2015-16) survey data was used for prior distributions. HIV prevalence among pregnant women obtained from the HIV Sentinel Surveillance 2019 was used for likelihood. Bayesian analysis was performed using the R programming (RStudio 2022.02.0). A posterior probability distribution was obtained using the prior distribution and the likelihood by applying the Bayes theorem. Graphical representation was achieved through R's plotting functions. Kerala and Pondicherry were not included in the analysis due to zero or very low prevalence reported in both NFHS and HSS.
Results: The Bayesian estimates of HIV prevalence among females were 0.38 % [95% CI:0.29 - 0.47] in Andhra Pradesh, 0.28 [95% CI:0.23 - 0.35] in Karnataka, 0.27 [95% CI:0.20 - 0.34] Odisha, 0.27 % [95% CI:0.19 - 0.36] in Telangana and 0.19 [95% CI:0.15 - 0.24] in Tamil Nadu.
Conclusion: Bayesian techniques present a versatile and robust strategy for modelling and analysing HIV- related data, offering a flexible and powerful approach to data analysis.