Voice Fence Wall: User-optional voice privacy transmission

Li Luo, Yining Liu
{"title":"Voice Fence Wall: User-optional voice privacy transmission","authors":"Li Luo,&nbsp;Yining Liu","doi":"10.1016/j.jiixd.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Sensors are widely applied in the collection of voice data. Since many attributes of voice data are sensitive such as user emotions, identity, raw voice collection may lead serious privacy threat. In the past, traditional feature extraction obtains and encrypts voice features that are then transmitted to upstream servers. In order to avoid sensitive attribute disclosure, it is necessary to separate the sensitive attributes from non-sensitive attributes of voice data. Motivated by this, user-optional privacy transmission framework for voice data (called: Voice Fence Wall) is proposed. Firstly, we provide user-optional, which means users can choose the attributes (sensitive attributes) they want to be protected. Secondly, Voice Fence Wall utilizes minimum mutual information (MI) to reduce the correlation between sensitive and non-sensitive attributes, thereby separating these attributes. Finally, only the separated non-sensitive attributes are transmitted to the upstream server, the quality of voice services is satisfied without leaking sensitive attributes. To verify the reliability and practicability, three voice datasets are used to evaluate the model, the experiments demonstrate that Voice Fence Wall not only effectively separates attributes to resist attribute inference attacks, but also outperforms related work in terms of classification performance. Specifically, our framework achieves 89.84 ​% accuracy in sentiment recognition and 6.01 ​% equal error rate in voice authentication.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"2 2","pages":"Pages 116-129"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294971592300080X/pdfft?md5=7d514122810a42466002016ad09b7381&pid=1-s2.0-S294971592300080X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294971592300080X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sensors are widely applied in the collection of voice data. Since many attributes of voice data are sensitive such as user emotions, identity, raw voice collection may lead serious privacy threat. In the past, traditional feature extraction obtains and encrypts voice features that are then transmitted to upstream servers. In order to avoid sensitive attribute disclosure, it is necessary to separate the sensitive attributes from non-sensitive attributes of voice data. Motivated by this, user-optional privacy transmission framework for voice data (called: Voice Fence Wall) is proposed. Firstly, we provide user-optional, which means users can choose the attributes (sensitive attributes) they want to be protected. Secondly, Voice Fence Wall utilizes minimum mutual information (MI) to reduce the correlation between sensitive and non-sensitive attributes, thereby separating these attributes. Finally, only the separated non-sensitive attributes are transmitted to the upstream server, the quality of voice services is satisfied without leaking sensitive attributes. To verify the reliability and practicability, three voice datasets are used to evaluate the model, the experiments demonstrate that Voice Fence Wall not only effectively separates attributes to resist attribute inference attacks, but also outperforms related work in terms of classification performance. Specifically, our framework achieves 89.84 ​% accuracy in sentiment recognition and 6.01 ​% equal error rate in voice authentication.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音栅栏墙:用户可选的语音隐私传输
传感器被广泛应用于语音数据的收集。由于语音数据的许多属性是敏感的,如用户的情绪、身份等,原始语音采集可能会导致严重的隐私威胁。过去,传统的特征提取方法是获取语音特征并进行加密,然后传输到上游服务器。为了避免敏感属性泄露,有必要将语音数据中的敏感属性和非敏感属性分开。受此启发,我们提出了用户可选的语音数据隐私传输框架(称为:语音篱笆墙)。首先,我们提供了用户可选性,即用户可以选择需要保护的属性(敏感属性)。其次,语音篱笆墙利用最小互信息(MI)来降低敏感属性和非敏感属性之间的相关性,从而分离这些属性。最后,只有被分离的非敏感属性才会被传输到上游服务器,从而在不泄露敏感属性的情况下满足语音服务的质量要求。为了验证该模型的可靠性和实用性,我们使用了三个语音数据集来评估该模型,实验证明语音篱笆墙不仅能有效分离属性以抵御属性推理攻击,而且在分类性能方面优于相关研究。具体地说,我们的框架在情感识别方面达到了 89.84 % 的准确率,在语音认证方面达到了 6.01 % 的平均错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Editorial Board Secure performance comparison for NOMA: Reconfigurable intelligent surface or amplify-and-forward relay? Editorial Board Structural knowledge-driven meta-learning for task offloading in vehicular networks with integrated communications, sensing and computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1