Neural network approach for shape-based euhedral pyrite identification in X-ray CT data with adversarial unsupervised domain adaptation

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-01-04 DOI:10.1016/j.acags.2023.100153
Suraj Neelakantan , Jesper Norell , Alexander Hansson , Martin Längkvist , Amy Loutfi
{"title":"Neural network approach for shape-based euhedral pyrite identification in X-ray CT data with adversarial unsupervised domain adaptation","authors":"Suraj Neelakantan ,&nbsp;Jesper Norell ,&nbsp;Alexander Hansson ,&nbsp;Martin Längkvist ,&nbsp;Amy Loutfi","doi":"10.1016/j.acags.2023.100153","DOIUrl":null,"url":null,"abstract":"<div><p>We explore an attenuation and shape-based identification of euhedral pyrites in high-resolution X-ray Computed Tomography (XCT) data using deep neural networks. To deal with the scarcity of annotated data we generate a complementary training set of synthetic images. To investigate and address the domain gap between the synthetic and XCT data, several deep learning models, with and without domain adaption, are trained and compared. We find that a model trained on a small set of human annotations, while displaying over-fitting, can rival the human annotators. The unsupervised domain adaptation approaches are successful in bridging the domain gap, which significantly improves their performance. A domain-adapted model, trained on a dataset that fuses synthetic and real data, is the overall best-performing model. This highlights the possibility of using synthetic datasets for the application of deep learning in mineralogy.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"21 ","pages":"Article 100153"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197423000423/pdfft?md5=b48cfaa3e867a2a2e72a1453cf13f16e&pid=1-s2.0-S2590197423000423-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We explore an attenuation and shape-based identification of euhedral pyrites in high-resolution X-ray Computed Tomography (XCT) data using deep neural networks. To deal with the scarcity of annotated data we generate a complementary training set of synthetic images. To investigate and address the domain gap between the synthetic and XCT data, several deep learning models, with and without domain adaption, are trained and compared. We find that a model trained on a small set of human annotations, while displaying over-fitting, can rival the human annotators. The unsupervised domain adaptation approaches are successful in bridging the domain gap, which significantly improves their performance. A domain-adapted model, trained on a dataset that fuses synthetic and real data, is the overall best-performing model. This highlights the possibility of using synthetic datasets for the application of deep learning in mineralogy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 X 射线 CT 数据中采用对抗性无监督域适应的神经网络方法进行基于形状的正方体黄铁矿识别
我们利用深度神经网络探索了一种基于衰减和形状的高分辨率 X 射线计算机断层扫描(XCT)数据中八面体黄铁矿的识别方法。为了解决注释数据稀缺的问题,我们生成了一个合成图像补充训练集。为了研究和解决合成数据与 XCT 数据之间的领域差距,我们训练了几个深度学习模型,并对其进行了领域自适应和非领域自适应的比较。我们发现,在一小部分人类注释集上训练的模型虽然表现出过拟合,但可以与人类注释者相媲美。无监督领域适应方法成功地弥合了领域差距,显著提高了性能。在融合了合成数据和真实数据的数据集上训练的领域适应模型是整体表现最佳的模型。这凸显了将合成数据集用于矿物学深度学习的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1