{"title":"General vorticity-streamfunction formulation for incompressible binary flow with arbitrary density ratio","authors":"Yanan Zhu, Yongchang Yang, Feng Ren","doi":"10.1002/fld.5257","DOIUrl":null,"url":null,"abstract":"<p>The classical vorticity-streamfunction formulation (VSF) can avoid the difficulty in the calculation of pressure gradient term of the Navier Stokes equation via eliminating pressure gradient term from the theoretical basis. Within this context we propose a general VSF, together with redefined vorticity and streamfunction, so as to realize numerically stable and reliable simulations of binary fluids with an arbitrary density contrast. By incorporating the interface-tracking phase-field model based on the conservative Allen-Cahn equation [Phys. Rev. E 94, 023311 (2016)], the binary flow simulation framework is established. Numerical tests are conducted using the Lattice Boltzmann method (LBM), which is usually regarded as an easy-to-use tool for solving the Navier–Stokes equation but generally suffers from the drawback of not being capable of enforcing incompressibility. The LBM herein functions as a numerical tool for solving the vorticity transport equation, the streamfunction equation, and the conservative Allen-Cahn equation. Three two-dimensional benchmark cases, i.e., the Capillary wave, the Rayleigh–Taylor instability, and the droplet splashing on a thin liquid film, are discussed in detail to verify the present methodology. Results show good agreements with both analytical predictions and literature data, as well as good numerical stability in terms of high density ratio and high Reynolds number. Overall, the general VSF inherits the intrinsic superiority of the classical VSF in enforcing incompressibility, and offers a useful and reliable alternative for binary flow modeling.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 4","pages":"561-573"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5257","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The classical vorticity-streamfunction formulation (VSF) can avoid the difficulty in the calculation of pressure gradient term of the Navier Stokes equation via eliminating pressure gradient term from the theoretical basis. Within this context we propose a general VSF, together with redefined vorticity and streamfunction, so as to realize numerically stable and reliable simulations of binary fluids with an arbitrary density contrast. By incorporating the interface-tracking phase-field model based on the conservative Allen-Cahn equation [Phys. Rev. E 94, 023311 (2016)], the binary flow simulation framework is established. Numerical tests are conducted using the Lattice Boltzmann method (LBM), which is usually regarded as an easy-to-use tool for solving the Navier–Stokes equation but generally suffers from the drawback of not being capable of enforcing incompressibility. The LBM herein functions as a numerical tool for solving the vorticity transport equation, the streamfunction equation, and the conservative Allen-Cahn equation. Three two-dimensional benchmark cases, i.e., the Capillary wave, the Rayleigh–Taylor instability, and the droplet splashing on a thin liquid film, are discussed in detail to verify the present methodology. Results show good agreements with both analytical predictions and literature data, as well as good numerical stability in terms of high density ratio and high Reynolds number. Overall, the general VSF inherits the intrinsic superiority of the classical VSF in enforcing incompressibility, and offers a useful and reliable alternative for binary flow modeling.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.