3D Numerical Modelling of Turbulent Flow in a Channel Partially Filled with Different Blockage Ratios of Metal Foam

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-01-01 DOI:10.47176/jafm.17.3.2189
A. Narkhede, †. N.Gnanasekaran
{"title":"3D Numerical Modelling of Turbulent Flow in a Channel Partially Filled with Different Blockage Ratios of Metal Foam","authors":"A. Narkhede, †. N.Gnanasekaran","doi":"10.47176/jafm.17.3.2189","DOIUrl":null,"url":null,"abstract":"The aim of the present research work is to understand the intricacies of fluid flow through a rectangular channel that has been partially filled with a metal foam block of different blockage ratio (0.16-1), with a pore density (5–30 Pores Per Inch i.e. PPI), along with varying inlet velocity (6.5–12.5 m/s). For the porous region, numerical solutions are acquired using the Darcy Extended Forchheimer model. The Navier-Stokes equation is used in the non-porous zone. Different flow behaviours were seen as a function of PPI, height, and inlet velocity. The pressure drop increases with inlet velocity, PPI, and block height, with a maximum value of approximately 4.5 kPa for the case of 30 PPI, 12.5 m/s, and a blockage ratio of 1. Results show that the existence and location of the formation of eddies depends on the inlet velocity, PPI, and blockage ratio. Such studies have been reported less and will aid research on forced convection through a channel partially filled with metal foam and optimisation studies between increased heat transmission and the additional pressure drop for the same by providing a detailed fluid flow analysis.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":"3 6","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.3.2189","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present research work is to understand the intricacies of fluid flow through a rectangular channel that has been partially filled with a metal foam block of different blockage ratio (0.16-1), with a pore density (5–30 Pores Per Inch i.e. PPI), along with varying inlet velocity (6.5–12.5 m/s). For the porous region, numerical solutions are acquired using the Darcy Extended Forchheimer model. The Navier-Stokes equation is used in the non-porous zone. Different flow behaviours were seen as a function of PPI, height, and inlet velocity. The pressure drop increases with inlet velocity, PPI, and block height, with a maximum value of approximately 4.5 kPa for the case of 30 PPI, 12.5 m/s, and a blockage ratio of 1. Results show that the existence and location of the formation of eddies depends on the inlet velocity, PPI, and blockage ratio. Such studies have been reported less and will aid research on forced convection through a channel partially filled with metal foam and optimisation studies between increased heat transmission and the additional pressure drop for the same by providing a detailed fluid flow analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分填充不同阻塞比金属泡沫的通道中湍流的三维数值建模
本研究工作旨在了解流体流经矩形通道的复杂性,该通道部分填充了不同阻塞比(0.16-1)的金属泡沫块,孔隙密度(5-30 孔/英寸,即 PPI)以及不同的入口速度(6.5-12.5 米/秒)。对于多孔区域,采用达西扩展福克海默模型进行数值求解。无孔区采用纳维-斯托克斯方程。在 PPI、高度和入口速度的作用下,出现了不同的流动行为。压降随入口速度、PPI 和阻塞高度的增加而增加,在 30 PPI、12.5 m/s 和阻塞比为 1 的情况下,最大值约为 4.5 kPa。 结果表明,涡流的存在和形成位置取决于入口速度、PPI 和阻塞比。此类研究报道较少,通过提供详细的流体流动分析,将有助于对通过部分填充金属泡沫的通道进行强制对流的研究,以及对增加的热量传输和额外压降之间的优化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1