A Bursting Liability Evaluation Method Based on Energy Transfer

IF 1.2 4区 工程技术 Q3 ACOUSTICS Shock and Vibration Pub Date : 2024-01-08 DOI:10.1155/2024/7090935
Yukun Hou, Shankun Zhao, Yang Zhao
{"title":"A Bursting Liability Evaluation Method Based on Energy Transfer","authors":"Yukun Hou, Shankun Zhao, Yang Zhao","doi":"10.1155/2024/7090935","DOIUrl":null,"url":null,"abstract":"As coal mining gradually moves to deep earth, rock bursts have emerged as one of the main disasters threatening the safety of coal production. It is beneficial to conduct economic and effective prevention and control work by evaluating the bursting liability and improving the bursting liability evaluation system. In this paper, based on the energy transfer model, the relationship between the bursting energy index and the mechanical parameters of coal bodies is obtained by testing the bursting liability of 16 coal seams stratified in three coal mines. According to the bursting energy index and the elastic energy index, the parameter <i>φ</i> is defined to represent the energy release ratio of coal. This paper thus presents a method to evaluate the bursting liability as the product of the energy release ratio and energy transfer ratio and provides a definition for the energy transfer index. The results show that the bursting energy index of coal is closely related to its mechanical parameters. The prepeak deformation energy exhibits a strong positive correlation with uniaxial compressive strength and peak strain. The energy release ratio parameter <i>φ</i> and bursting energy index have high sensitivity and wide applicability. The results of the energy transfer index Ω = <i>βφ</i> are consistent with the results of bursting liability identification, which can better reflect the bursting liability, and can be used as the basis for judgment when the “<svg height=\"6.01072pt\" style=\"vertical-align:-0.04980993pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.75925 6.01072\" width=\"7.75925pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>” result is obtained in bursting liability identification. It is anticipated that this approach will become an important evaluation index for bursting liability identification.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7090935","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

As coal mining gradually moves to deep earth, rock bursts have emerged as one of the main disasters threatening the safety of coal production. It is beneficial to conduct economic and effective prevention and control work by evaluating the bursting liability and improving the bursting liability evaluation system. In this paper, based on the energy transfer model, the relationship between the bursting energy index and the mechanical parameters of coal bodies is obtained by testing the bursting liability of 16 coal seams stratified in three coal mines. According to the bursting energy index and the elastic energy index, the parameter φ is defined to represent the energy release ratio of coal. This paper thus presents a method to evaluate the bursting liability as the product of the energy release ratio and energy transfer ratio and provides a definition for the energy transfer index. The results show that the bursting energy index of coal is closely related to its mechanical parameters. The prepeak deformation energy exhibits a strong positive correlation with uniaxial compressive strength and peak strain. The energy release ratio parameter φ and bursting energy index have high sensitivity and wide applicability. The results of the energy transfer index Ω = βφ are consistent with the results of bursting liability identification, which can better reflect the bursting liability, and can be used as the basis for judgment when the “” result is obtained in bursting liability identification. It is anticipated that this approach will become an important evaluation index for bursting liability identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于能量传递的爆破能力评估方法
随着煤炭开采逐渐向深部转移,岩爆已成为威胁煤炭生产安全的主要灾害之一。通过爆破责任评价,完善爆破责任评价体系,有利于开展经济有效的防治工作。本文基于能量传递模型,通过对3个煤矿16个煤层分层的爆破责任性试验,得到了爆破能指数与煤体力学参数之间的关系。根据爆破能指数和弹性能指数,定义了代表煤体能量释放率的参数φ。因此,本文提出了一种用能量释放比和能量传递比的乘积来评价爆破责任的方法,并给出了能量传递指数的定义。结果表明,煤的爆破能指数与其力学参数密切相关。峰前变形能与单轴抗压强度和峰值应变呈很强的正相关。能量释放比参数φ和爆能指数具有较高的灵敏度和广泛的适用性。能量传递指数Ω=βφ的结果与爆破责任鉴定结果一致,能较好地反映爆破责任,在爆破责任鉴定中得到""结果时,可作为判断依据。预计该方法将成为爆破责任鉴定的重要评价指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
期刊最新文献
Control Effect Analysis and Engineering Application of Anchor Cable Beam-Truss Structure on Large-Deformation Roadway in Deep Coal Mine Study on Ultrasonic Characteristics and Prediction of Rock with Different Pore Sizes Deformation and Failure Evolution Law and Support Optimization of Gob-Side Entry in Weakly Cemented Soft Rock under the Influence of Fault Study on Pretightening Loss Effect of Bolt Support in Deep Soft Rock Roadway Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1