Jakub A Kochanowski, Bobby Carroll, Merrill E Asp, Emma C Kaputa, Alison E Patteson
{"title":"Bacteria Colonies Modify Their Shear and Compressive Mechanical Properties in Response to Different Growth Substrates.","authors":"Jakub A Kochanowski, Bobby Carroll, Merrill E Asp, Emma C Kaputa, Alison E Patteson","doi":"10.1021/acsabm.3c00907","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria build multicellular communities termed biofilms, which are often encased in a self-secreted extracellular matrix that gives the community mechanical strength and protection against harsh chemicals. How bacteria assemble distinct multicellular structures in response to different environmental conditions remains incompletely understood. Here, we investigated the connection between bacteria colony mechanics and the colony growth substrate by measuring the oscillatory shear and compressive rheology of bacteria colonies grown on agar substrates. We found that bacteria colonies modify their own mechanical properties in response to shear and uniaxial compression in a manner that depends on the concentration of agar in their growth substrate. These findings highlight that mechanical interactions between bacteria and their microenvironments are an important element in bacteria colony development, which can aid in developing strategies to disrupt or reduce biofilm growth.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"7809-7817"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.3c00907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria build multicellular communities termed biofilms, which are often encased in a self-secreted extracellular matrix that gives the community mechanical strength and protection against harsh chemicals. How bacteria assemble distinct multicellular structures in response to different environmental conditions remains incompletely understood. Here, we investigated the connection between bacteria colony mechanics and the colony growth substrate by measuring the oscillatory shear and compressive rheology of bacteria colonies grown on agar substrates. We found that bacteria colonies modify their own mechanical properties in response to shear and uniaxial compression in a manner that depends on the concentration of agar in their growth substrate. These findings highlight that mechanical interactions between bacteria and their microenvironments are an important element in bacteria colony development, which can aid in developing strategies to disrupt or reduce biofilm growth.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.