A comprehensive study on the longissius dorsi muscle of Ashdan yaks under different feeding regimes based on transcriptomic and metabolomic analyses.

IF 1.7 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Biotechnology Pub Date : 2024-11-01 Epub Date: 2024-01-09 DOI:10.1080/10495398.2023.2294785
Tong Wang, Xiaoming Ma, Qingbo Zheng, Chaofan Ma, Zhilong Zhang, Heping Pan, Xian Guo, Xiaoyun Wu, Min Chu, Chunnian Liang, Ping Yan
{"title":"A comprehensive study on the longissius dorsi muscle of Ashdan yaks under different feeding regimes based on transcriptomic and metabolomic analyses.","authors":"Tong Wang, Xiaoming Ma, Qingbo Zheng, Chaofan Ma, Zhilong Zhang, Heping Pan, Xian Guo, Xiaoyun Wu, Min Chu, Chunnian Liang, Ping Yan","doi":"10.1080/10495398.2023.2294785","DOIUrl":null,"url":null,"abstract":"<p><p>Yak is an important dominant livestock species at high altitude, and the growth performance of yak has obvious differences under different feeding methods. This experiment was conducted to compare the effects of different feeding practices on growth performance and meat quality of yaks through combined transcriptomic and metabolomic analyses. In terms of yak growth performance, compared with traditional grazing, in-house feeding can significantly improve the average daily weight gain, carcass weight and net meat weight of yaks; in terms of yak meat quality, in-house feeding can effectively improve the quality of yak meat. A combined transcriptomic and metabolomic analysis revealed 31 co-enriched pathways, among which arginine metabolism, proline metabolism and glycerophospholipid metabolism may be involved in the development of the longissimus dorsi muscle of yak and the regulation of meat quality-related traits. The experimental results increased our understanding of yak meat quality and provided data materials for subsequent deep excavation of the mechanism of yak meat quality.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2023.2294785","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Yak is an important dominant livestock species at high altitude, and the growth performance of yak has obvious differences under different feeding methods. This experiment was conducted to compare the effects of different feeding practices on growth performance and meat quality of yaks through combined transcriptomic and metabolomic analyses. In terms of yak growth performance, compared with traditional grazing, in-house feeding can significantly improve the average daily weight gain, carcass weight and net meat weight of yaks; in terms of yak meat quality, in-house feeding can effectively improve the quality of yak meat. A combined transcriptomic and metabolomic analysis revealed 31 co-enriched pathways, among which arginine metabolism, proline metabolism and glycerophospholipid metabolism may be involved in the development of the longissimus dorsi muscle of yak and the regulation of meat quality-related traits. The experimental results increased our understanding of yak meat quality and provided data materials for subsequent deep excavation of the mechanism of yak meat quality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于转录组学和代谢组学分析对不同饲养方式下阿什丹牦牛背长肌的综合研究。
牦牛是高海拔地区重要的优势畜种,不同饲养方式下牦牛的生长性能存在明显差异。本实验通过转录组和代谢组分析,比较了不同饲养方式对牦牛生长性能和肉质的影响。在牦牛生长性能方面,与传统放牧相比,舍饲能显著提高牦牛的平均日增重、胴体重和净肉重;在牦牛肉质方面,舍饲能有效提高牦牛肉质。转录组学和代谢组学联合分析发现了31条共富集通路,其中精氨酸代谢、脯氨酸代谢和甘油磷脂代谢可能参与了牦牛背长肌的发育和肉质相关性状的调控。实验结果加深了我们对牦牛肉质的认识,为后续深入挖掘牦牛肉质的机理提供了数据资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Animal Biotechnology
Animal Biotechnology 工程技术-奶制品与动物科学
CiteScore
2.90
自引率
5.40%
发文量
230
审稿时长
>12 weeks
期刊介绍: Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology. Submissions on the following topics are particularly welcome: - Applied microbiology, immunogenetics and antibiotic resistance - Genome engineering and animal models - Comparative genomics - Gene editing and CRISPRs - Reproductive biotechnologies - Synthetic biology and design of new genomes
期刊最新文献
Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with FecB++ genotype. Evaluation the effect of dietary vitamin E, sesamin and thymoquinone bioactive compounds on immunological response, intestinal traits and MUC-2 gene expression in broiler Japanese quails (Coturnix japonica). Deciphering the miRNA transcriptome of granulosa cells from dominant and subordinate follicles at first follicular wave in goat. Effect of alfalfa supplementary change dietary non-fibrous carbohydrate (NFC) to neutral detergent fiber (NDF) ratio on rumen fermentation and microbial function in Gansu alpine fine wool sheep (Ovis aries). Effects of JUNCAO Ganoderma lucidum polysaccharide peptide on slaughter performance and intestinal health of Minxinan black rabbits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1