Aerosolizable Pyrazinamide-Loaded Biodegradable Nanoparticles for the Management of Pulmonary Tuberculosis.

IF 2 4区 医学 Q3 RESPIRATORY SYSTEM Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-02-01 Epub Date: 2024-01-10 DOI:10.1089/jamp.2022.0078
Komal Parmar, Swati Sondarva
{"title":"Aerosolizable Pyrazinamide-Loaded Biodegradable Nanoparticles for the Management of Pulmonary Tuberculosis.","authors":"Komal Parmar, Swati Sondarva","doi":"10.1089/jamp.2022.0078","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Pyrazinamide is a Biopharmaceutical Classification System class III antibiotic indicated for active tuberculosis. <b><i>Methods:</i></b> In the present work, pyrazinamide-loaded biodegradable polymeric nanoparticles (PNPs) based dry powder inhaler were developed using the double emulsion solvent evaporation technique and optimized using design of experiments to provide direct pulmonary administration with minimal side effects. Batches were characterized for various physicochemical and aerosol performance properties. <b><i>Results:</i></b> Optimized batch exhibited particle size of 284.5 nm, % entrapment efficiency of 71.82%, polydispersibility index of 0.487, zeta potential of -17.23 mV, and <i>in vitro</i> drug release at 4 hours of 79.01%. Spray-dried PNPs were evaluated for drug content, <i>in vitro</i> drug release, and kinetics. The particle mass median aerodynamic diameter was within the alveolar region's range (2.910 μm). In the trachea and lung, there was a 2.5- and 1.2-fold increase in <i>in vivo</i> deposition with respect to pure drug deposition, respectively. <i>In vitro</i> drug uptake findings showed that alveolar macrophages with pyrazinamide PNPs had a considerably higher drug concentration. Furthermore, accelerated stability studies were carried out for the optimized batch. Results indicated no significant change in the evaluation parameters, which showed stability of the formulation for at least a 6-month period. <b><i>Conclusion:</i></b> PNPs prepared using biodegradable polymers exhibited efficient pulmonary drug delivery with decent stability.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":"30-40"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2022.0078","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pyrazinamide is a Biopharmaceutical Classification System class III antibiotic indicated for active tuberculosis. Methods: In the present work, pyrazinamide-loaded biodegradable polymeric nanoparticles (PNPs) based dry powder inhaler were developed using the double emulsion solvent evaporation technique and optimized using design of experiments to provide direct pulmonary administration with minimal side effects. Batches were characterized for various physicochemical and aerosol performance properties. Results: Optimized batch exhibited particle size of 284.5 nm, % entrapment efficiency of 71.82%, polydispersibility index of 0.487, zeta potential of -17.23 mV, and in vitro drug release at 4 hours of 79.01%. Spray-dried PNPs were evaluated for drug content, in vitro drug release, and kinetics. The particle mass median aerodynamic diameter was within the alveolar region's range (2.910 μm). In the trachea and lung, there was a 2.5- and 1.2-fold increase in in vivo deposition with respect to pure drug deposition, respectively. In vitro drug uptake findings showed that alveolar macrophages with pyrazinamide PNPs had a considerably higher drug concentration. Furthermore, accelerated stability studies were carried out for the optimized batch. Results indicated no significant change in the evaluation parameters, which showed stability of the formulation for at least a 6-month period. Conclusion: PNPs prepared using biodegradable polymers exhibited efficient pulmonary drug delivery with decent stability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肺结核治疗的可气溶胶化吡嗪酰胺生物降解纳米粒子。
背景:吡嗪酰胺是生物制药分类系统 III 类抗生素,适用于活动性结核病。研究方法在本研究中,使用双乳液溶剂蒸发技术开发了基于干粉吸入器的吡嗪酰胺生物可降解聚合物纳米粒子(PNPs),并通过实验设计对其进行了优化,以提供副作用最小的直接肺部给药。对各批次产品的各种理化和气溶胶性能进行了表征。结果:优化批次的粒径为 284.5 nm,截留效率为 71.82%,多分散指数为 0.487,zeta 电位为 -17.23 mV,4 小时体外药物释放率为 79.01%。对喷雾干燥的 PNPs 进行了药物含量、体外药物释放和动力学评估。颗粒质量中值空气动力学直径在肺泡区域范围内(2.910 μm)。在气管和肺中,与纯药物沉积相比,体内沉积分别增加了 2.5 倍和 1.2 倍。体外药物吸收研究结果表明,含有吡嗪酰胺 PNPs 的肺泡巨噬细胞的药物浓度要高得多。此外,还对优化批次进行了加速稳定性研究。结果表明,评价参数无明显变化,这表明制剂至少在 6 个月内具有稳定性。结论使用生物可降解聚合物制备的 PNPs 具有高效的肺部给药效果和良好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
2.90%
发文量
34
审稿时长
>12 weeks
期刊介绍: Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient. Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes: Pulmonary drug delivery Airway reactivity and asthma treatment Inhalation of particles and gases in the respiratory tract Toxic effects of inhaled agents Aerosols as tools for studying basic physiologic phenomena.
期刊最新文献
In Vitro Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation. Prospects of Inhalable Formulations of Conventionally Administered Repurposed Drugs for Adjunctive Treatment of Drug-Resistant Tuberculosis: Supporting Evidence from Clinical Trials and Cohort Studies. Scale-Up and Postapproval Changes in Orally Inhaled Drug Products: Scientific and Regulatory Considerations. Assessing Human Lung Pharmacokinetics Using Exhaled Breath Particles. Demographic and Asthma-Related Characteristics of Asthmatics Using Pressurized Metered Dose Inhalers and Dry Powder Inhalers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1