Systemic Glucose Regulation by a Hindbrain Inhibitory Circuit in a Mouse Model of Type 1 Diabetes.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-01-01 Epub Date: 2024-01-09 DOI:10.1159/000536142
J Anna Juras, Soledad Pitra, Bret N Smith
{"title":"Systemic Glucose Regulation by a Hindbrain Inhibitory Circuit in a Mouse Model of Type 1 Diabetes.","authors":"J Anna Juras, Soledad Pitra, Bret N Smith","doi":"10.1159/000536142","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Previous work showed that increasing the electrical activity of inhibitory neurons in the dorsal vagal complex (DVC) is sufficient to increase whole-body glucose concentration in normoglycemic mice. Here we tested the hypothesis that deactivating GABAergic neurons in the dorsal hindbrain of hyperglycemic mice decreases synaptic inhibition of parasympathetic motor neurons in the dorsal motor nucleus of the vagus (DMV) and reduces systemic glucose levels.</p><p><strong>Methods: </strong>Chemogenetic activation or inactivation of GABAergic neurons in the nucleus tractus solitarius (NTS) was used to assess effects of modulating parasympathetic output on blood glucose concentration in normoglycemic and hyperglycemic mice. Patch-clamp electrophysiology in vitro was used to assess cellular effects of chemogenetic manipulation of NTS GABA neurons.</p><p><strong>Results: </strong>Chemogenetic activation of GABAergic NTS neurons in normoglycemic mice increased their action potential firing, resulting in increased inhibitory synaptic input to DMV motor neurons and elevated blood glucose concentration. Deactivation of GABAergic DVC neurons in normoglycemic mice altered their electrical activity but did not alter systemic glucose levels. Conversely, stimulation of GABAergic DVC neurons in mice that were hyperglycemic subsequent to treatment with streptozotocin changed their electrical activity but did not alter whole-body glucose concentration, while deactivation of this inhibitory circuit significantly decreased circulating glucose concentration. Peripheral administration of a brain impermeant muscarinic acetylcholine receptor antagonist abolished these effects.</p><p><strong>Conclusion: </strong>Disinhibiting vagal motor neurons decreases hyperglycemia in a mouse model of type 1 diabetes. This inhibitory brainstem circuit emerges as a key parasympathetic regulator of whole-body glucose homeostasis that undergoes functional plasticity in hyperglycemic conditions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000536142","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Previous work showed that increasing the electrical activity of inhibitory neurons in the dorsal vagal complex (DVC) is sufficient to increase whole-body glucose concentration in normoglycemic mice. Here we tested the hypothesis that deactivating GABAergic neurons in the dorsal hindbrain of hyperglycemic mice decreases synaptic inhibition of parasympathetic motor neurons in the dorsal motor nucleus of the vagus (DMV) and reduces systemic glucose levels.

Methods: Chemogenetic activation or inactivation of GABAergic neurons in the nucleus tractus solitarius (NTS) was used to assess effects of modulating parasympathetic output on blood glucose concentration in normoglycemic and hyperglycemic mice. Patch-clamp electrophysiology in vitro was used to assess cellular effects of chemogenetic manipulation of NTS GABA neurons.

Results: Chemogenetic activation of GABAergic NTS neurons in normoglycemic mice increased their action potential firing, resulting in increased inhibitory synaptic input to DMV motor neurons and elevated blood glucose concentration. Deactivation of GABAergic DVC neurons in normoglycemic mice altered their electrical activity but did not alter systemic glucose levels. Conversely, stimulation of GABAergic DVC neurons in mice that were hyperglycemic subsequent to treatment with streptozotocin changed their electrical activity but did not alter whole-body glucose concentration, while deactivation of this inhibitory circuit significantly decreased circulating glucose concentration. Peripheral administration of a brain impermeant muscarinic acetylcholine receptor antagonist abolished these effects.

Conclusion: Disinhibiting vagal motor neurons decreases hyperglycemia in a mouse model of type 1 diabetes. This inhibitory brainstem circuit emerges as a key parasympathetic regulator of whole-body glucose homeostasis that undergoes functional plasticity in hyperglycemic conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 1 型糖尿病小鼠模型中,后脑抑制回路对全身葡萄糖的调节。
前言以前的研究表明,增加背迷走神经复合体(DVC)中抑制性神经元的电活动足以增加正常血糖小鼠的全身葡萄糖浓度。在这里,我们测试了这样一个假设:使高血糖小鼠背侧后脑中的 GABA 能神经元失活,会降低迷走神经背侧运动核(DMV)中副交感运动神经元的突触抑制,并降低全身血糖水平:方法:采用化学方法激活或失活脊髓束核(NTS)中的GABA能神经元,以评估调节副交感神经输出对正常血糖和高血糖小鼠血糖浓度的影响。体外膜片钳电生理学用于评估对 NTS GABA 神经元的化学操作对细胞的影响:结果:正常血糖小鼠NTS GABA能神经元的化学激活增加了它们的动作电位发射,导致DMV运动神经元的抑制性突触输入增加和血糖浓度升高。停用正常血糖小鼠的 GABA 能 DVC 神经元会改变其电活动,但不会改变全身血糖水平。相反,在使用链脲佐菌素治疗后出现高血糖的小鼠体内,刺激 GABA 能 DVC 神经元会改变其电活动,但不会改变全身葡萄糖浓度,而停用这一抑制回路则会显著降低循环葡萄糖浓度。外周注射一种脑渗透性毒蕈碱乙酰胆碱受体拮抗剂可消除这些影响:结论:抑制迷走运动神经元可降低 1 型糖尿病小鼠模型的高血糖。这一抑制性脑干回路是全身葡萄糖稳态的关键副交感神经调节器,在高血糖条件下会发生功能可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1