Surface acoustic wave actuated plasmonic signal amplification in a plasmonic waveguide.

0 MATERIALS SCIENCE, MULTIDISCIPLINARY Discover nano Pub Date : 2024-01-09 DOI:10.1186/s11671-023-03951-0
Rohit Gupta, Kuntal Barman, Liang-Yun Lee, Anuj Chauhan, Jian-Jang Huang
{"title":"Surface acoustic wave actuated plasmonic signal amplification in a plasmonic waveguide.","authors":"Rohit Gupta, Kuntal Barman, Liang-Yun Lee, Anuj Chauhan, Jian-Jang Huang","doi":"10.1186/s11671-023-03951-0","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancement of nanoscale confinement in the subwavelength waveguide is a concern for advancing future photonic interconnects. Rigorous innovation of plasmonic waveguide-based structure is crucial in designing a reliable on-chip optical waveguide beyond the diffraction limit. Despite several structural modifications and architectural improvements, the plasmonic waveguide technology is far from reaching its maximum potential for mass-scale applications due to persistence issues such as insufficient confined energy and short propagation length. This work proposes a new method to amplify the propagating plasmons through an external on-chip surface acoustic signal. The gold-silicon dioxide (Au-SiO<sub>2</sub>) interface, over Lithium Niobate (LN) substrate, is used to excite propagating surface plasmons. The voltage-varying surface acoustic wave (SAW) can tune the plasmonic confinement to a desired signal energy level, enhancing and modulating the plasmonic intensity. From our experimental results, we can increase the plasmonic intensity gain of 1.08 dB by providing an external excitation in the form of SAW at a peak-to-peak potential swing of 3 V, utilizing a single chip.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-023-03951-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancement of nanoscale confinement in the subwavelength waveguide is a concern for advancing future photonic interconnects. Rigorous innovation of plasmonic waveguide-based structure is crucial in designing a reliable on-chip optical waveguide beyond the diffraction limit. Despite several structural modifications and architectural improvements, the plasmonic waveguide technology is far from reaching its maximum potential for mass-scale applications due to persistence issues such as insufficient confined energy and short propagation length. This work proposes a new method to amplify the propagating plasmons through an external on-chip surface acoustic signal. The gold-silicon dioxide (Au-SiO2) interface, over Lithium Niobate (LN) substrate, is used to excite propagating surface plasmons. The voltage-varying surface acoustic wave (SAW) can tune the plasmonic confinement to a desired signal energy level, enhancing and modulating the plasmonic intensity. From our experimental results, we can increase the plasmonic intensity gain of 1.08 dB by providing an external excitation in the form of SAW at a peak-to-peak potential swing of 3 V, utilizing a single chip.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子波导中的表面声波驱动等离子信号放大。
增强亚波长波导中的纳米级约束是推进未来光子互连的一个关注点。基于等离子体波导结构的严格创新对于设计超越衍射极限的可靠片上光波导至关重要。尽管对结构进行了多次修改和架构改进,但由于限制能量不足和传播长度较短等长期存在的问题,等离子体波导技术远未发挥其在大规模应用中的最大潜力。这项工作提出了一种通过外部片上表面声学信号放大传播质子的新方法。在铌酸锂 (LN) 衬底上的金-二氧化硅(Au-SiO2)界面用于激发传播的表面等离子体。电压变化的表面声波(SAW)可将等离子体约束调整到所需的信号能级,从而增强和调制等离子体强度。从我们的实验结果来看,利用单个芯片,以 3 V 峰-峰电位摆幅的声表面波形式提供外部激励,可将等离子强度增益提高 1.08 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. Exploitation of functionalized green nanomaterials for plant disease management. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. Effect of annealing temperature on the optoelectrical synapse behaviors of A-ZnO microtube. Anticandidal applications of selenium nanoparticles biosynthesized with Limosilactobacillus fermentum (OR553490).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1