Euclidean TSP in Narrow Strips

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Discrete & Computational Geometry Pub Date : 2024-01-08 DOI:10.1007/s00454-023-00609-7
Henk Alkema, Mark de Berg, Remco van der Hofstad, Sándor Kisfaludi-Bak
{"title":"Euclidean TSP in Narrow Strips","authors":"Henk Alkema, Mark de Berg, Remco van der Hofstad, Sándor Kisfaludi-Bak","doi":"10.1007/s00454-023-00609-7","DOIUrl":null,"url":null,"abstract":"<p>We investigate how the complexity of <span>Euclidean TSP</span> for point sets <i>P</i> inside the strip <span>\\((-\\infty ,+\\infty )\\times [0,\\delta ]\\)</span> depends on the strip width <span>\\(\\delta \\)</span>. We obtain two main results.</p><ul>\n<li>\n<p>For the case where the points have distinct integer <i>x</i>-coordinates, we prove that a shortest bitonic tour (which can be computed in <span>\\(O(n\\log ^2 n)\\)</span> time using an existing algorithm) is guaranteed to be a shortest tour overall when <span>\\(\\delta \\leqslant 2\\sqrt{2}\\)</span>, a bound which is best possible.</p>\n</li>\n<li>\n<p>We present an algorithm that is fixed-parameter tractable with respect to <span>\\(\\delta \\)</span>. Our algorithm has running time <span>\\(2^{O(\\sqrt{\\delta })} n + O(\\delta ^2 n^2)\\)</span> for sparse point sets, where each <span>\\(1\\times \\delta \\)</span> rectangle inside the strip contains <i>O</i>(1) points. For random point sets, where the points are chosen uniformly at random from the rectangle <span>\\([0,n]\\times [0,\\delta ]\\)</span>, it has an expected running time of <span>\\(2^{O(\\sqrt{\\delta })} n\\)</span>. These results generalise to point sets <i>P</i> inside a hypercylinder of width <span>\\(\\delta \\)</span>. In this case, the factors <span>\\(2^{O(\\sqrt{\\delta })}\\)</span> become <span>\\(2^{O(\\delta ^{1-1/d})}\\)</span>.</p>\n</li>\n</ul>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00609-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate how the complexity of Euclidean TSP for point sets P inside the strip \((-\infty ,+\infty )\times [0,\delta ]\) depends on the strip width \(\delta \). We obtain two main results.

  • For the case where the points have distinct integer x-coordinates, we prove that a shortest bitonic tour (which can be computed in \(O(n\log ^2 n)\) time using an existing algorithm) is guaranteed to be a shortest tour overall when \(\delta \leqslant 2\sqrt{2}\), a bound which is best possible.

  • We present an algorithm that is fixed-parameter tractable with respect to \(\delta \). Our algorithm has running time \(2^{O(\sqrt{\delta })} n + O(\delta ^2 n^2)\) for sparse point sets, where each \(1\times \delta \) rectangle inside the strip contains O(1) points. For random point sets, where the points are chosen uniformly at random from the rectangle \([0,n]\times [0,\delta ]\), it has an expected running time of \(2^{O(\sqrt{\delta })} n\). These results generalise to point sets P inside a hypercylinder of width \(\delta \). In this case, the factors \(2^{O(\sqrt{\delta })}\) become \(2^{O(\delta ^{1-1/d})}\).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
窄带欧氏 TSP
我们研究了欧几里得TSP的复杂性如何取决于带宽((-\infty ,+\infty )\times [0,\delta])。对于点有不同的整数 x 坐标的情况,我们证明当 \(\delta leqslant 2\sqrt{2}\) 时,一个最短的 bitonic tour(可以用现有的算法在 \(O(n\log ^2 n)\) 时间内计算出来)保证是一个最短的总的 tour,这个约束是最好的。我们的算法对于稀疏点集的运行时间为(2^{O(\sqrt{\delta })} n + O(\delta ^2 n^2)),其中条带内的每\(1\times \delta \)个矩形包含O(1)个点。对于随机点集,即从矩形 \([0,n]\times [0,\delta ]\) 中均匀随机地选择点,它的预期运行时间为 \(2^{O(\sqrt{\delta })} n\) 。这些结果可以推广到宽度为 \(\delta \)的超圆柱体内部的点集 P。在这种情况下,因子 \(2^{O(\sqrt{\delta })}\) 变成了 \(2^{O(\delta ^{1-1/d})}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
期刊最新文献
The Complexity of Order Type Isomorphism Volume Computation for Meissner Polyhedra and Applications Erdős–Szekeres-Type Problems in the Real Projective Plane The Structure of Metrizable Graphs Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1