Junfeng Zou, Jingmao Huang, Junxian Pei, Xuelong Yang, Zhi Huang, Kang Liu
{"title":"A walking energy harvesting device based on miniature water turbine","authors":"Junfeng Zou, Jingmao Huang, Junxian Pei, Xuelong Yang, Zhi Huang, Kang Liu","doi":"10.1063/5.0182563","DOIUrl":null,"url":null,"abstract":"The rapid development of wearable electronics highlights the urgence to develop the portable energy harvester with excellent output performance, comfortability, and sustainability. This work designs an electromagnetic walking energy harvester based on water turbine that can be embedded in shoes with good comfortability. Its working principle is that the walking generated pressure energy drives a miniature hydraulic turbine to output electricity. Experimental results show that an average power of 300 and 180 mW can be produced at heel and toe, respectively, when a man of 80 kg walks at a speed of 1.8 m s−1. This power output exceeds the piezoelectric, triboelectric, and electromagnetic walking energy harvesters reported in the past. Additionally, the simpler structure endows it better comfortability as compared with the electrostatic capacitances. Computational fluid dynamics simulations provide a further insight that the efficiency of turbine can reach 13.5% by optimizing parameters of blade number and outlet flow ratio. Finally, user real-time positioning and trajectory recording are successfully demonstrated via a wearable GPS means Global Positioning System module powered by the harvester. Due to the combination of high output performance, simple structure and low discomfort, the water turbine based walking energy harvester will provide a wide application potential in wearable devices.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"16 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0182563","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of wearable electronics highlights the urgence to develop the portable energy harvester with excellent output performance, comfortability, and sustainability. This work designs an electromagnetic walking energy harvester based on water turbine that can be embedded in shoes with good comfortability. Its working principle is that the walking generated pressure energy drives a miniature hydraulic turbine to output electricity. Experimental results show that an average power of 300 and 180 mW can be produced at heel and toe, respectively, when a man of 80 kg walks at a speed of 1.8 m s−1. This power output exceeds the piezoelectric, triboelectric, and electromagnetic walking energy harvesters reported in the past. Additionally, the simpler structure endows it better comfortability as compared with the electrostatic capacitances. Computational fluid dynamics simulations provide a further insight that the efficiency of turbine can reach 13.5% by optimizing parameters of blade number and outlet flow ratio. Finally, user real-time positioning and trajectory recording are successfully demonstrated via a wearable GPS means Global Positioning System module powered by the harvester. Due to the combination of high output performance, simple structure and low discomfort, the water turbine based walking energy harvester will provide a wide application potential in wearable devices.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces