Alberto Sánchez-Delgado, Keshav Garg, Cor Scherjon, Hyosang Lee
{"title":"Frontend and backend electronics achieving flexibility and scalability for tomographic tactile sensing","authors":"Alberto Sánchez-Delgado, Keshav Garg, Cor Scherjon, Hyosang Lee","doi":"10.1007/s11370-023-00502-5","DOIUrl":null,"url":null,"abstract":"<p>Tactile sensing is essential for robots to adequately interact with the physical world, but creating tactile sensors for the robot’s soft and flexible body surface has been a challenge. The resistance tomography-based tactile sensors have been introduced as a promising approach to creating soft tactile skins because the sensor fabrication can be greatly simplified with the aid of a computation model. This article introduces an electronic design strategy dividing frontend and backend electronics for the resistance tomography-based tactile sensors. In this scheme, the frontend is made of the piezoresistive structure and electrodes that can be changed depending on the required geometry. The backend is the electronic circuit for resistance tomography, which can be used for various frontend geometries. To evaluate the use of a unified backend for different frontend geometries, two frontend specimens with a square shape and a circular shape are tested. The minimum detectable contact force and the minimum discernible contact distance are calculated as <span>\\(0.83 \\times 10^{-4}\\)</span> N/mm<span>\\(^2\\)</span>, 2.51 mm for the square-shaped frontend and <span>\\(1.19 \\times 10^{-4}\\)</span> N/mm<span>\\(^2\\)</span>, 3.42 mm for the circular-shaped frontend. The results indicated that the proposed electronic design strategy can be used to create tactile skins with different scales and geometries while keeping the same backend design.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"2 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00502-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tactile sensing is essential for robots to adequately interact with the physical world, but creating tactile sensors for the robot’s soft and flexible body surface has been a challenge. The resistance tomography-based tactile sensors have been introduced as a promising approach to creating soft tactile skins because the sensor fabrication can be greatly simplified with the aid of a computation model. This article introduces an electronic design strategy dividing frontend and backend electronics for the resistance tomography-based tactile sensors. In this scheme, the frontend is made of the piezoresistive structure and electrodes that can be changed depending on the required geometry. The backend is the electronic circuit for resistance tomography, which can be used for various frontend geometries. To evaluate the use of a unified backend for different frontend geometries, two frontend specimens with a square shape and a circular shape are tested. The minimum detectable contact force and the minimum discernible contact distance are calculated as \(0.83 \times 10^{-4}\) N/mm\(^2\), 2.51 mm for the square-shaped frontend and \(1.19 \times 10^{-4}\) N/mm\(^2\), 3.42 mm for the circular-shaped frontend. The results indicated that the proposed electronic design strategy can be used to create tactile skins with different scales and geometries while keeping the same backend design.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).