{"title":"Fe/BC co-conditioners with environmental and economic benefits on composting: reduced NH3 emissions and improved fertilizer quality","authors":"","doi":"10.1007/s42773-023-00295-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The significant volatilization of NH<sub>3</sub> during aerobic composting causes nitrogen (N) losses and environmental risks. Both iron (Fe) and biochar (BC) can influence the N conversion process in composting. Fe application can delay the maturation of materials, while biochar can enhance the quality of organic fertilizer. The combination of these two conditioners may help decrease NH<sub>3</sub> emissions and improve organic fertilizer quality. Therefore, this study investigates the effects of different doses of FeCl<sub>3</sub> and BC on NH<sub>3</sub> emissions and organic fertilizer quality during composting. The results demonstrated that Fe/BC co-conditioners reduced the accumulation of NH<sub>3</sub> emissions during composting by 11.1–48.2%, increased the total nutrient content by 0.6–15.3%, and enhanced economic and environmental benefits by 0.1–23.6 $ t<sup>−1</sup>. At the high-temperature stage of composting, Fe/BC co-conditioners decreased the pH by 0.3–1.2, but there was no significant difference compared to the control at the end of composting, and they did not affect compost maturation. The structural equation model analysis suggested that the reduction in NH<sub>3</sub> emissions was related to ammonia-oxidizing bacteria (AOB), NH<sub>4</sub><sup>+</sup>–N, and total nitrogen (TN). As a result, the Fe/BC co-conditioners reduced NH<sub>3</sub> emissions by lowering the pH at the beginning of composting and increasing the content of NH<sub>4</sub><sup>+</sup>–N. This study concludes that Fe/BC co-conditioners could complement each other to significantly reduce NH<sub>3</sub> emissions and improve the quality of organic fertilizers.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/42773_2023_295_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"16 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-023-00295-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The significant volatilization of NH3 during aerobic composting causes nitrogen (N) losses and environmental risks. Both iron (Fe) and biochar (BC) can influence the N conversion process in composting. Fe application can delay the maturation of materials, while biochar can enhance the quality of organic fertilizer. The combination of these two conditioners may help decrease NH3 emissions and improve organic fertilizer quality. Therefore, this study investigates the effects of different doses of FeCl3 and BC on NH3 emissions and organic fertilizer quality during composting. The results demonstrated that Fe/BC co-conditioners reduced the accumulation of NH3 emissions during composting by 11.1–48.2%, increased the total nutrient content by 0.6–15.3%, and enhanced economic and environmental benefits by 0.1–23.6 $ t−1. At the high-temperature stage of composting, Fe/BC co-conditioners decreased the pH by 0.3–1.2, but there was no significant difference compared to the control at the end of composting, and they did not affect compost maturation. The structural equation model analysis suggested that the reduction in NH3 emissions was related to ammonia-oxidizing bacteria (AOB), NH4+–N, and total nitrogen (TN). As a result, the Fe/BC co-conditioners reduced NH3 emissions by lowering the pH at the beginning of composting and increasing the content of NH4+–N. This study concludes that Fe/BC co-conditioners could complement each other to significantly reduce NH3 emissions and improve the quality of organic fertilizers.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.