Wanyue Li, Zeming Liu, Yuli Huang, Jie Zheng, Yang Yang, Yimeng Cao, Liwen Ding, Yuling Meng, Weixing Shan
{"title":"Phytophthora infestans RXLR effector Pi23014 targets host RNA-binding protein NbRBP3a to suppress plant immunity","authors":"Wanyue Li, Zeming Liu, Yuli Huang, Jie Zheng, Yang Yang, Yimeng Cao, Liwen Ding, Yuling Meng, Weixing Shan","doi":"10.1111/mpp.13416","DOIUrl":null,"url":null,"abstract":"<i>Phytophthora infestans</i> is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding <i>P. infestans</i> pathogenesis and host plant immunity. In this study, we show that the virulence RXLR effector Pi23014 of <i>P. infestans</i> targets the host nucleus and chloroplasts. By using a liquid chromatogrpahy-tandem mass spectrometry assay and co-immunoprecipitation assasys, we show that it interacts with NbRBP3a, a putative glycine-rich RNA-binding protein. We confirmed the co-localization of Pi23014 and NbRBP3a within the nucleus, by using bimolecular fluorescence complementation. Reverse transcription-quantitative PCR assays showed that the expression of <i>NbRBP3a</i> was induced in <i>Nicotiana benthamiana</i> during <i>P. infestans</i> infection and the expression of marker genes for multiple defence pathways were significantly down-regulated in <i>NbRBP3</i>-silenced plants compared with <i>GFP</i>-silenced plants. <i>Agrobacterium tumefaciens</i>-mediated transient overexpression of <i>NbRBP3a</i> significantly enhanced plant resistance to <i>P. infestans</i>. Mutations in the N-terminus RNA recognition motif (RRM) of NbRBP3a abolished its interaction with Pi23014 and eliminated its capability to enhance plant resistance to leaf colonization by <i>P. infestans</i>. We further showed that silencing <i>NbRBP3</i> reduced photosystem II activity, reduced host photosynthetic efficiency, attenuated Pi23014-mediated suppression of cell death triggered by <i>P. infestans</i> pathogen-associated molecular pattern elicitor <i>INF1</i>, and suppressed plant immunity.","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"4 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.13416","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phytophthora infestans is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding P. infestans pathogenesis and host plant immunity. In this study, we show that the virulence RXLR effector Pi23014 of P. infestans targets the host nucleus and chloroplasts. By using a liquid chromatogrpahy-tandem mass spectrometry assay and co-immunoprecipitation assasys, we show that it interacts with NbRBP3a, a putative glycine-rich RNA-binding protein. We confirmed the co-localization of Pi23014 and NbRBP3a within the nucleus, by using bimolecular fluorescence complementation. Reverse transcription-quantitative PCR assays showed that the expression of NbRBP3a was induced in Nicotiana benthamiana during P. infestans infection and the expression of marker genes for multiple defence pathways were significantly down-regulated in NbRBP3-silenced plants compared with GFP-silenced plants. Agrobacterium tumefaciens-mediated transient overexpression of NbRBP3a significantly enhanced plant resistance to P. infestans. Mutations in the N-terminus RNA recognition motif (RRM) of NbRBP3a abolished its interaction with Pi23014 and eliminated its capability to enhance plant resistance to leaf colonization by P. infestans. We further showed that silencing NbRBP3 reduced photosystem II activity, reduced host photosynthetic efficiency, attenuated Pi23014-mediated suppression of cell death triggered by P. infestans pathogen-associated molecular pattern elicitor INF1, and suppressed plant immunity.
期刊介绍:
Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.