{"title":"Hydrolytic degradation and biomineralization of amine-cured epoxy resin based on glycidate","authors":"Bungo Ochiai, Yutaka Nakazawa, Yoshimasa Matsumura, Takahiro Kawai","doi":"10.1038/s41428-023-00880-8","DOIUrl":null,"url":null,"abstract":"Amine-cured epoxy resins bearing ester moieties were synthesized, and their properties, hydrolytic degradation behavior, and biomineralization were investigated. Neopentyl glycol diglycidate (NPG) was used as the epoxide and was cured with diethylenetriamine (DETA) and isophoronediamine (IPD) at different ratios. The glass transition temperatures were controlled using the composition of DETA and IPD. The cured materials containing IPD units were tolerant to neutral water but were degraded under acidic and basic conditions. Degradation in the presence of lipase also proceeded in phosphate buffer, while degradation proceeded gradually in the absence of lipase. To demonstrate their potential application as degradable biomedical materials for bone and dental repair, composites containing hydroxyapatite (HA) were prepared by curing NPG and the amines in the presence of HA. Biological bone-like apatite was grown on an NPG-IPD-HA composite by immersion in synthetic biofluid, and the amount of bone-like apatite was greater than that on the glycidyl ether analog. Amine-cured epoxy resins bearing ester moieties were synthesized, and their properties, hydrolytic degradation behavior, and biomineralization were investigated. Neopentyl glycol diglycidate (NPG) was used as the epoxide and was cured with diethylenetriamine and isophoronediamine at different ratios. The Tgs and degradability were controlled using the composition of amines. To demonstrate their potential application as degradable materials for bone and dental repair, composites containing hydroxyapatite were prepared by curing NPG and the amines in the presence of HA. Bone-like apatite was grown on a composite by immersion in synthetic biofluid.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 4","pages":"409-417"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-023-00880-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-023-00880-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Amine-cured epoxy resins bearing ester moieties were synthesized, and their properties, hydrolytic degradation behavior, and biomineralization were investigated. Neopentyl glycol diglycidate (NPG) was used as the epoxide and was cured with diethylenetriamine (DETA) and isophoronediamine (IPD) at different ratios. The glass transition temperatures were controlled using the composition of DETA and IPD. The cured materials containing IPD units were tolerant to neutral water but were degraded under acidic and basic conditions. Degradation in the presence of lipase also proceeded in phosphate buffer, while degradation proceeded gradually in the absence of lipase. To demonstrate their potential application as degradable biomedical materials for bone and dental repair, composites containing hydroxyapatite (HA) were prepared by curing NPG and the amines in the presence of HA. Biological bone-like apatite was grown on an NPG-IPD-HA composite by immersion in synthetic biofluid, and the amount of bone-like apatite was greater than that on the glycidyl ether analog. Amine-cured epoxy resins bearing ester moieties were synthesized, and their properties, hydrolytic degradation behavior, and biomineralization were investigated. Neopentyl glycol diglycidate (NPG) was used as the epoxide and was cured with diethylenetriamine and isophoronediamine at different ratios. The Tgs and degradability were controlled using the composition of amines. To demonstrate their potential application as degradable materials for bone and dental repair, composites containing hydroxyapatite were prepared by curing NPG and the amines in the presence of HA. Bone-like apatite was grown on a composite by immersion in synthetic biofluid.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.