W. Wang, A.J. Dickson, M.A. Stow, M. Dellinger, K.W. Burton, P.S. Savage, R.G. Hilton, J. Prytulak
{"title":"Rhenium elemental and isotopic variations at magmatic temperatures","authors":"W. Wang, A.J. Dickson, M.A. Stow, M. Dellinger, K.W. Burton, P.S. Savage, R.G. Hilton, J. Prytulak","doi":"10.7185/geochemlet.2402","DOIUrl":null,"url":null,"abstract":"Recent analytical advances in the measurement of rhenium (Re) isotope ratios allow its potential as a palaeoredox and chemical weathering proxy to be explored. However, a successful isotopic proxy must be grounded by an understanding of its composition and behaviour in the solid Earth. Here, we present Re concentrations and Re isotopic (δ<sup>187</sup>Re) compositions for a well-characterised sequence of lavas from Hekla volcano, Iceland. The concentration of Re varies from 0.02 to 1.4 ng/g, decreasing from basalt to more evolved lavas. We show that the crystallisation and removal of magnetite is responsible for the Re decrease in this system. By contrast, δ<sup>187</sup>Re values for the same suite of samples show a relatively narrow range (−0.45 to −0.22 ‰), suggesting minimal resolvable Re isotope fractionation between magnetite and the silicate melt. Together with other samples, including mid-ocean ridge basalts, these first igneous data can be used to estimate a baseline for terrestrial materials (δ<sup>187</sup>Re = −0.33 ± 0.15 ‰, 2 s.d., <em>n</em> = 14), from which low-temperature Re isotope variations in Earth’s surficial environments can be assessed, alongside the global isotope mass balance of Re.","PeriodicalId":12613,"journal":{"name":"Geochemical Perspectives Letters","volume":"50 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Perspectives Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.7185/geochemlet.2402","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent analytical advances in the measurement of rhenium (Re) isotope ratios allow its potential as a palaeoredox and chemical weathering proxy to be explored. However, a successful isotopic proxy must be grounded by an understanding of its composition and behaviour in the solid Earth. Here, we present Re concentrations and Re isotopic (δ187Re) compositions for a well-characterised sequence of lavas from Hekla volcano, Iceland. The concentration of Re varies from 0.02 to 1.4 ng/g, decreasing from basalt to more evolved lavas. We show that the crystallisation and removal of magnetite is responsible for the Re decrease in this system. By contrast, δ187Re values for the same suite of samples show a relatively narrow range (−0.45 to −0.22 ‰), suggesting minimal resolvable Re isotope fractionation between magnetite and the silicate melt. Together with other samples, including mid-ocean ridge basalts, these first igneous data can be used to estimate a baseline for terrestrial materials (δ187Re = −0.33 ± 0.15 ‰, 2 s.d., n = 14), from which low-temperature Re isotope variations in Earth’s surficial environments can be assessed, alongside the global isotope mass balance of Re.
期刊介绍:
Geochemical Perspectives Letters is an open access, internationally peer-reviewed journal of the European Association of Geochemistry (EAG) that publishes short, highest-quality articles spanning geochemical sciences. The journal aims at rapid publication of the most novel research in geochemistry with a focus on outstanding quality, international importance, originality, and stimulating new developments across the vast array of geochemical disciplines.