Structure-Preserving Doubling Algorithms That Avoid Breakdowns for Algebraic Riccati-Type Matrix Equations

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED SIAM Journal on Matrix Analysis and Applications Pub Date : 2024-01-10 DOI:10.1137/23m1551791
Tsung-Ming Huang, Yueh-Cheng Kuo, Wen-Wei Lin, Shih-Feng Shieh
{"title":"Structure-Preserving Doubling Algorithms That Avoid Breakdowns for Algebraic Riccati-Type Matrix Equations","authors":"Tsung-Ming Huang, Yueh-Cheng Kuo, Wen-Wei Lin, Shih-Feng Shieh","doi":"10.1137/23m1551791","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 59-83, March 2024. <br/> Abstract. Structure-preserving doubling algorithms (SDAs) are efficient algorithms for solving Riccati-type matrix equations. However, breakdowns may occur in SDAs. To remedy this drawback, in this paper, we first introduce [math]-symplectic forms ([math]-SFs), consisting of symplectic matrix pairs with a Hermitian parametric matrix [math]. Based on [math]-SFs, we develop modified SDAs (MSDAs) for solving the associated Riccati-type equations. MSDAs generate sequences of symplectic matrix pairs in [math]-SFs and prevent breakdowns by employing a reasonably selected Hermitian matrix [math]. In practical implementations, we show that the Hermitian matrix [math] in MSDAs can be chosen as a real diagonal matrix that can reduce the computational complexity. The numerical results demonstrate a significant improvement in the accuracy of the solutions by MSDAs.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1551791","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 59-83, March 2024.
Abstract. Structure-preserving doubling algorithms (SDAs) are efficient algorithms for solving Riccati-type matrix equations. However, breakdowns may occur in SDAs. To remedy this drawback, in this paper, we first introduce [math]-symplectic forms ([math]-SFs), consisting of symplectic matrix pairs with a Hermitian parametric matrix [math]. Based on [math]-SFs, we develop modified SDAs (MSDAs) for solving the associated Riccati-type equations. MSDAs generate sequences of symplectic matrix pairs in [math]-SFs and prevent breakdowns by employing a reasonably selected Hermitian matrix [math]. In practical implementations, we show that the Hermitian matrix [math] in MSDAs can be chosen as a real diagonal matrix that can reduce the computational complexity. The numerical results demonstrate a significant improvement in the accuracy of the solutions by MSDAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
避免代数 Riccati-Type 矩阵方程崩溃的保结构倍增算法
SIAM 矩阵分析与应用期刊》,第 45 卷,第 1 期,第 59-83 页,2024 年 3 月。 摘要。保结构加倍算法(SDA)是求解里卡提类矩阵方程的高效算法。然而,SDA 可能会出现故障。为了弥补这一缺陷,本文首先介绍了[math]-交映形式([math]-SFs),它由交映矩阵对和赫米特参数矩阵[math]组成。基于[math]-SFs,我们开发了用于求解相关里卡提式方程的修正 SDAs(MSDAs)。MSDAs 在[math]-SFs 中生成交映矩阵对序列,并通过采用合理选择的赫米矩阵[math]来防止崩溃。在实际应用中,我们发现 MSDA 中的赫米矩阵[math]可以选择实对角矩阵,从而降低计算复杂度。数值结果表明,MSDAs 能显著提高求解精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
期刊最新文献
On Substochastic Inverse Eigenvalue Problems with the Corresponding Eigenvector Constraints Low-Rank Plus Diagonal Approximations for Riccati-Like Matrix Differential Equations Multichannel Frequency Estimation with Constant Amplitude via Convex Structured Low-Rank Approximation Kronecker Product of Tensors and Hypergraphs: Structure and Dynamics Growth Factors of Orthogonal Matrices and Local Behavior of Gaussian Elimination with Partial and Complete Pivoting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1