Advances in Metabolic Regulation of Macrophage Polarization State.

IF 2.9 4区 医学 Q3 IMMUNOLOGY Immunological Investigations Pub Date : 2024-04-01 Epub Date: 2024-01-11 DOI:10.1080/08820139.2024.2302828
Xin Liu, Ruoxuan Xiang, Xue Fang, Guodong Wang, Yuyan Zhou
{"title":"Advances in Metabolic Regulation of Macrophage Polarization State.","authors":"Xin Liu, Ruoxuan Xiang, Xue Fang, Guodong Wang, Yuyan Zhou","doi":"10.1080/08820139.2024.2302828","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.</p>","PeriodicalId":13387,"journal":{"name":"Immunological Investigations","volume":" ","pages":"416-436"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820139.2024.2302828","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巨噬细胞极化状态的代谢调节研究进展。
巨噬细胞是重要的免疫相关细胞,对组织生长、稳态维持、病原体抵抗和损伤愈合至关重要。本文阐述了近年来对巨噬细胞极化状态代谢调控的研究,以及极化状态对相关疾病的发生和发展的影响。首先,我们回顾了巨噬细胞的起源和分类,尤其关注了三羧酸循环和三种主要代谢产物如何影响巨噬细胞的极化。控制巨噬细胞极化的主要代谢枢纽是三羧酸循环。最后,我们回顾了巨噬细胞的极化状态对癌症、炎症性疾病和其他疾病的发生和发展的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunological Investigations
Immunological Investigations 医学-免疫学
CiteScore
5.50
自引率
7.10%
发文量
49
审稿时长
3 months
期刊介绍: Disseminating immunological developments on a worldwide basis, Immunological Investigations encompasses all facets of fundamental and applied immunology, including immunohematology and the study of allergies. This journal provides information presented in the form of original research articles and book reviews, giving a truly in-depth examination of the latest advances in molecular and cellular immunology.
期刊最新文献
Differential Expression of Granulysin, MHC Class I-Related Chain A, and Perforin in Serum and Peritoneal Fluid: Immune Dysregulation in Endometriosis-Related Infertility. Serum-Derived Exosomal TBX2-AS1 Exacerbates COPD by Altering the M1/M2 Ratio of Macrophages through Regulating the miR-423-5p/miR-23b-3p Axis. Evaluation of the Immunoadjuvant Effects of miR-155-Chitosan Polyplex on Leishmania major Infected Mice. Combination Effect of Radiotherapy and Targeted Therapy with NK Cell-Based Immunotherapy in head and Neck Squamous Cell Carcinoma. NOD1 Agonist Induces Proliferation and Plasma Cell Differentiation of Mouse B Cells Especially CD23high B Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1